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a b s t r a c t 

Information processing in the brain is mediated by structural white matter pathways and is highly dependent 

on topological brain properties. Here we combined transcranial magnetic stimulation (TMS) with high-density 

electroencephalography (EEG) and Diffusion Weighted Imaging (DWI), specifically looking at macroscale connec- 

tivity to understand whether regional, network-level or whole-brain structural properties are more responsible 

for stimulus propagation. Neuronavigated TMS pulses were delivered over two individually defined nodes of the 

default mode (DMN) and dorsal attention (DAN) networks in a group of healthy subjects, with test-retest reliabil- 

ity assessed 1-month apart. TMS-evoked activity was predicted by the modularity and structural integrity of the 

stimulated network rather than the targeted region(s) or the whole-brain connectivity, suggesting network-level 

structural connectivity as more relevant than local and global brain properties in shaping TMS signal propaga- 

tion. The importance of network structural connectome was unveiled only by evoked activity, but not resting-state 

data. Future clinicals interventions might enhance target engagement by adopting DWI-guided, network-focused 

TMS. 
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. Introduction 

In the last two decades, transcranial magnetic stimulation (TMS) has

een widely employed to study functional connectivity and plasticity in

he human cortex ( Ziemann, 2004 ), as well as transiently manipulate

rain spontaneous dynamics ( Santarnecchi et al., 2018 ) and human cog-

ition ( Momi et al., 2019 ). Indeed, TMS allows a relatively focal stimula-

ion (~2–2.5 cm diameter) of the human brain using very brief duration

agnetic waves administered by an electromagnetic coil positioned on

he scalp ( Hallett, 2007 ). However, the effect of the TMS pulse is not

imited to the underlying stimulated tissue, but it can possibly reverber-

te within interconnected cortical networks, inducing synchronization

f distant cortical areas and changes in functional connectivity dynam-

cs ( Di Lazzaro, 2004 ; Massimini et al., 2005 ; Siebner et al., 2001 ). A

ompelling way to quantify these cortico-cortical connectivity patterns

s to combine TMS with electroencephalography (EEG) ( Voineskos et al.,

010 ), thus looking at millisecond-level brain activity propagation

hroughout the brain and potentially capture individual variability in
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esponse to external perturbation, as well as disease-specific alterations

f brain activity ( Benussi et al., 2020 ; Massimini et al., 2012 ). In a recent

MS-EEG study ( Ozdemir et al., 2020 ), we have stimulated two resting-

tate networks (RSNs) ( Fox et al., 2005 ) (i.e. Default Mode Network,

MN, and Dorsal Attention Network, DAN) showing how the external-

nduced signal follows network dynamics usually measured via func-

ional magnetic resonance imaging (fMRI). Changes in RSNs connectiv-

ty emerge when pathological states arise ( Anderson et al., 2011 ), sug-

esting resting-state fMRI (rs-fMRI) as a potential biomarker of disease

ymptomatology and progression ( Ferguson et al., 2019 ). The possibility

f indexing network activity via TMS-EEG would open new possibilities

or disease tracking and early detection of network-level dysfunction,

ut more information about network engagement and propagation are

eeded. 

While the understanding of TMS propagation pathways and princi-

les is still incomplete, the vast majority of studies suggest that TMS

ulses propagate along white matter tracts ( O’Shea et al., 2008 ), with

he conductivity of white matter bundles potentially shaping the prop-

gation of action potentials ( McCann et al., 2019 ). In this context,
ember 2020 
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Fig. 1. Study design and conceptual frame- 

work. (A) TMS targets were individualized 

based on resting-state fMRI data. A high de- 

gree of variability in functional connectivity 

of the TMS targets was present. (B) fMRI- 

guided TMS was applied to two neighboring 

parietal nodes corresponding to the DMN and 

DAN. Anatomical MRI were used for the neu- 

ronavigation of the TMS spots while hd-EEG 

with 64 channels was simultaneously recorded. 

(C) TMS-induced electric field was modelled 

with SimNIBS ( Thielscher et al., 2015 ). The fi- 

nal map was overlapped with the 7 Network 

parcellation ( Schaefer et al., 2018 ) in order 

to assure network engagement specificity. (D) 

The EEG signal was projected at source level 

using dynamic statistical parametric mapping 

(dSPM) and constraining source dipoles to the 

cortical surface. The RSNs time series were ex- 

tracted for both DMN and DAN. The raw time 

series were first rectified ( Cheng et al., 2013 ) 

and then a baseline bootstrapping procedure 

( Lv et al., 2007 ) was applied. Then, 1000 per- 

mutation t -test were performed in which the 

surrogated post-TMS vs pre-TMS difference was 

computed after each iteration and statistically 

compared with the real difference ( Pernet et al., 2015 ). Finally, the cluster threshold was determined as the 95th percentile of the cluster’s surrogate distribution 

and the area under the curve (AUC) of the significant clusters was extracted. (E) The individual whole brain structural connectome was computed. A five-layers 

hierarchical model was created where several connectivity metrics were extracted, ranging from local to whole-brain measures. Note: V/m: Volt per meter; DAN: 

Dorsal attention network; DMN: Default mode network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

i  

t  

t  

a  

T  

D  

w  

f  

r  

m  

T  

l  

t  

e  

w  

T  

t  

(  

s  

(  

w  

a  

l  

t  

a  

f  

t  

c  

s  

c  

t  

r  

p  

s  

m  

M

2

2

 

t  

w  

a  

(  

f  

t  

r  

o  

(  

i  

w  

D  

o  

c  

c  

f  

b

2

 

r  

fi  

e  

 

 

 

 

 

ndividual differences in the complexity and organization of the struc-

ural connectome might play a critical role in determining the response

o TMS, and such information could be used to guide TMS targeting

nd achieve maximal target engagement. Here we used image-guided

MS-EEG to selectively perturb one of two neighboring nodes of the

MN and DAN ( Fox et al., 2005 ) to then extrapolate individual net-

ork engagement values by computing the area under the curve (AUC)

or significant post-TMS time points, thus providing higher temporal

esolution. Afterwards, we correlated individual response to TMS with

acroscale structural properties of the brain. In particular, we combined

MS, EEG and Diffusion Weighted Imaging (DWI) to test an ad-hoc five-

ayer hierarchical framework ranging from local to network-level up

o whole-brain structural connectivity, therefore moving along a gradi-

nt including local, regional patterns on one side and very unspecific

hole-brain connections on the other end. Specifically, the response to

MS targeting the DMN and DAN was correlated with (a) the struc-

ural connectivity of the stimulated region with the rest of the brain,

b) the connectivity of the stimulated region with the other nodes of the

ame network, (c) the intrinsic connectivity of the targeted network,

d) the modularity of the brain as an index of between and within net-

orks connectivity ( Sporns and Betzel, 2016 ), and (e) the overall aver-

ge structural connectivity of the entire brain. Given the relevance of

ocal activation induced by TMS ( Krieg et al., 2013 ), we hypothesized

hat layers of the hierarchical model related to local connectivity (e.g.

 and b) would constitute important predictors of the response to TMS,

ollowed by network-level ones. To further investigate the specificity of

he results, the structural connectivity of non-stimulated RSNs was also

orrelated as a control condition. Additionally, to verify whether mea-

uring the response to TMS-based perturbation provides an advantage in

apturing the relevance of individual structural connectivity properties,

he same analysis was repeated by looking at network activity during

esting-state EEG recording. Finally, considering the quest for data re-

roducibility, the same analyses were repeated on data collected on the

ame sample of healthy individuals across two separate study visits one

onth apart. For details on the study design please see Fig. 1 and the

ethods section of the manuscript. 
2 
. Material and methods 

.1. Participants 

The study was approved by the Institutional Review Board of

he Beth Israel Deaconess Medical Center. Each participant provided

ritten informed consent conformed to the Declaration of Helsinki

nd was compensated for the entire study. Twenty-one right-handed

 Oldfield, 1971 ) healthy volunteers (mean age = 32 ± 10 years, ranging

rom 19 to 49 years) with normal neurological and psychiatric evalua-

ion and no history of drugs acting on the central nervous system were

ecruited through flyers and on-line advertisement. Participants carried

ut a pre-TMS assessment comprehensive of structural (e.g. T1-weighted

T1w) and DWI) and functional (e.g. fMRI) MRI. After that, two TMS vis-

ts, separated by one month, were performed where 120 single pulses

ere delivered in two neighboring parietal nodes corresponding to the

MN and DAN. At the beginning of each TMS visit, resting motor thresh-

ld (RMT) was identified for each participant, targeting the left motor

ortex (M1) in order to define TMS intensity for each participant ac-

ording to international TMS guidelines ( Rossi et al., 2020 ). Methods

or data acquisition are presented in the following paragraph and have

een further described in ( Ozdemir et al., 2020 ). 

.2. Conceptual framework 

To explore the relationship between local/global brain features and

esponse to network-targeted TMS, we delineated a granular, ad-hoc

ve-levels hierarchical model ranging from high modularity to high gen-

rality where several connectivity measures were extracted (see Fig. 1 E):

a. Stimulated region to brain connectivity (Stim2Brain): a metric repre-

senting the number of structural connections between the stimulated

region and any other brain region. This index was calculated by av-

eraging the number of streamlines which originate from the stimu-

lated area and terminate in every other brain region. This metrics
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captures global connectivity of the stimulated region regardless of

the stimulated region/network; 

b. Stimulated region to network connectivity (Stim2Network): an index ex-

pressing the connectivity between the stimulated region and any

other node of its network. This index was calculated by averaging

the number of streamlines which originate from the stimulated re-

gion and terminate in any other node of the same network. This met-

ric captures local connectivity of the stimulated region with respect

to the targeted network; 

c. Stimulated network connectivity (Network): this metric incorporates

the intrinsic connectivity of the stimulated network extracted by con-

sidering the streamlines that connect each pair of network nodes.

This index was calculated by averaging the number of streamlines

which connect every brain region belonging to the same network.

This represents the stimulated network connectivity without consid-

ering global property of the brain; 

d. Within/between network connectivity (Modularity): a general prop-

erty of the individual connectome expressing how much each struc-

tural connectivity matrix was arranged in sub-modules ( Rubinov and

Sporns, 2010 ). This index was computed using the Louvain algo-

rithm ( Blondel et al., 2008 ), implemented in the Brain Connectivity

Toolbox ( Rubinov and Sporns, 2010 ) as follows: 

𝑄 = 

1 
2 𝑚 

∑
𝑖𝑗 

[ 
𝐴 𝑖𝑗 − 

𝑘 𝑖 𝑘 𝑗 

2 𝑚 

] 
𝛿
(
𝑐 𝑖 , 𝑐 𝑗 

)

here m is the sum of all the nodes in the network; A ij is the adjacency

atrix representing the edge weight between node i and node j; k i and

 j are the sum of the weights of the edges attached to nodes i and j,

espectively; 𝛿(c i ,c j ) are the communities of the nodes and is 1 if nodes

 and j belong to the same subset of the maximized partition of brain

odes, and 0 otherwise. 

e. Whole-brain connectivity (Brain): the most generic level where an in-

dex of global structural connectivity was computed regardless of

network differentiation. This index was calculated by averaging the

number of streamlines which traverse every brain region. This level

represents global properties of each individual, that could affect TMS

propagation regardless of the stimulated region/network; 

For each subject, the structural connectivity metrics were accord-

ngly extracted following this model and then used to predict TMS-EEG

esponse. Specifically, the number of streamlines within each level was

orrelated with the average source-level induced activity in the target

etwork (see DWI analysis section for more details on streamlines cal-

ulation). A multiple regression analysis was implemented to identify

hich level of the hierarchical model better explain the TMS-EEG re-

ponse. For a summary of the study design, analytical framework and

tructural hierarchy please see Fig. 1 . For details on the specific methods

ee dedicated sections below. 

.3. MRI data acquisition 

A T1w anatomical MRI scan was obtained in all participants and used

or neuronavigation. MRI data was acquired on a 3T scanner (GE Health-

are, Ltd., United Kingdom) using a 3D spoiled gradient echo sequence:

66 axial-oriented slices for whole-brain coverage; 240-mm isotropic

eld-of-view; 0.937-mm × 0.937-mm × 1-mm native resolution; flip an-

le = 15°; TE/TR ≥ 2.9/6.9 ms; duration ≥ 432 s. DWI sequence were

lso acquired using a single-shot echo planar imaging (slices = 71; ma-

rix size = 256 × 256 × 71; voxel size = 0.8 mm × 0.8 × 2.2; repeti-

ion time = 8500 ms, time echo = 79 ms; 30 non-colinear directions,

-value = 1000s/mm 

2 ). 

.4. DWI data preprocessing and analysis 

A customize pipeline running in Ubuntu 18.04 LTS was used for the

reprocessing of DWI images using tools in FMRIB Software Library
3 
FSL 5.0.3; www.fmrib.ox.ac.uk/fsl ) ( Jenkinson et al., 2012 ), MRtrix3

 mrtrix.readthedocs.io/en/latest/ ) ( Tournier et al., 2012 ), FreeSurfer

 Fischl et al., 2004 ) and ANTs ( stnava.github.io/ANTs/ ) ( Avants et al.,

011 ). All images were denoised ( Veraart et al., 2016 ), preprocessed

ia FSL’s EDDY ( Andersson and Sotiropoulos, 2016 ), and bias field cor-

ected ( Zhang et al., 2001 ). The response function for a single fiber pop-

lation was estimated using spherical deconvolution Tournier algorithm

 Tournier et al., 2007 ). 

Simultaneously, the T1w images were coregistered to the b0 volume

nd then segmented using FAST algorithm ( Zhang et al., 2001 ). Follow-

ng the anatomically constrained tractography was employed to gen-

rate the initial tractogram with 50 million streamlines using second-

rder integration over fiber orientation distributions ( Tournier et al.,

010 ). Then, spherical-deconvolution Informed Filtering of Tractograms

SIFT2) methodology ( Smith et al., 2015 ) was applied in order to pro-

ide more biologically accurate measures of fiber connectivity. The

chaefer’s atlas ( Schaefer et al., 2018 ) which divided the brain into 100

egions and 7 Networks was then mapped to the individual’s FreeSurfer

arcellation and then used to construct the final structural connectome

alculating the number of estimated tracts between any two brain re-

ions. The final connectivity matrices were then normalized based on

he size of each ROIs ( Bonilha et al., 2015 ). For further details on grand

ean average structural connectome please see Supplementary Results

nd Figure S5. 

.5. TMS 

TMS was delivered using a figure-of-eight shaped coil with dynamic

uid cooling (Magspro 75 mm cool B-65, Magpro A/S., Denmark) at-

ached to a MagPro X-100 stimulator (MagVenture A/S, Denmark). Indi-

idual high-resolution T1w images were imported into the Brainsight TM 

MS Frameless Navigation system (Rogue Research Inc., Montreal,

anada), and co-registered to digitized anatomical landmarks for online

onitoring of coil positioning. Motor evoked potentials (MEPs) were

ecorded from the right first dorsal interosseous (FDI) and the abductor

ollicis brevis (APB) muscles. Ag-AgCl surface electrode-pairs placed on

he belly and tendon of the muscles and a ground on the right ulnar

tyloid process. EMG data were amplified and digitized using a Power-

ab 4/25T data acquisition system (ADInstruments) at a sampling rate

f 4000 Hz (bandpass filtered at 10 Hz to 2000 Hz). EMG signals were

ontinuously streamed by using LabChart software (LabChart 8.0) to

onitor MEPs and epochs were recorded with a 150 ms window length

overing from 50 ms before to 100 ms after TMS pulse. 

.6. EEG 

Whole scalp 64-channel EEG data was collected with a TMS-

ompatible amplifier system (actiCHamp system, Brain Products GmbH,

unich, Germany) and labeled in accordance with the extended 10–20

nternational system. EEG data were online referenced to Fp1 electrode.

lectrode impedances were maintained below 5k Ω at a sampling rate of

000 Hz. EEG signals were digitized using a BrainCHamp DC amplifier

nd linked to BrainVision Recorder software (version 1.21) for online

onitoring. Digitized EEG electrode locations on the scalp are also co-

egistered to individual MRI scans using Brainsight TM TMS Frameless

avigation system. 

.7. TMS targets 

In order to identify individualized TMS targets, group-level resting-

tate functional networks maps were used, based on a 7 networks par-

ellation covering cortical and subcortical structures ( Yeo et al., 2011 ).

he 7 networks correspond to visual (VIS), somatosensory (SM), lim-

ic (LIM), dorsal attention (DAN), anterior salience (AS), default mode

DMN), and fronto-parietal (FPN) RSNs. Confidence maps for each RSN

ere used, representing the confidence of each vertex belonging to its

http://www.fmrib.ox.ac.uk/fsl
https://mrtrix.readthedocs.io/en/latest/
https://stnava.github.io/ANTs/
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ssigned network across a sample of 1000 healthy subjects (expressed

s valued between − 1 and 1), with larger values indicating higher con-

dence. By using group-level functional parcellations and confidence

aps, we were able to target the most consistent and reliable regions

ithin each network, therefore increasing the generalizability of TMS-

EG findings. We first projected the 7-network functional cortical atlas

nd the confidence maps onto subject’s cortical surface using the spher-

cal registration implemented in Freesurfer software ( Fig. 1 A). The re-

ulting maps were then resampled to native structural T1w MRIs. Voxels

ithin each network were weighted by the confidence map and the vox-

ls with the highest confidence in angular gyrus and superior parietal

n the right hemisphere were chosen for DMN and DAN stimulations

espectively. 

.8. TMS-EEG data collection 

TMS stimulation intensity was determined based on individual rest-

ng motor threshold (RMT), defying as the lowest stimulation inten-

ity necessary to elicit an MEP of at least 50 𝜇V in 5 out of 10 tri-

ls ( Rossini et al., 2015 ). The hotspot of stimulation was therefore de-

ned as based on the cortical hand region where MEPs were the largest

nd more consistent, as recorded in the first dorsal interosseous (FDI)

 Rothwell et al., 1999 ). Throughout the stimulation visit, participants

ore earplugs to protect their hearing ( Rossi et al., 2009 ), and audi-

ory white noise masking was used to minimize the impact of the TMS

lick ( ter Braack et al., 2015 ). A thin layer of foam was placed under the

MS coil to minimize somatosensory contamination of the TMS-evoked

EG potentials. A total of 120 single TMS pulses were delivered to each

timulation target (DMN target site within the angular gyrus, DAN tar-

et site within the superior parietal lobule)at an intensity of 120% RMT

ith randomly jittered (3000–5000 ms) inter stimulus intervals over two

epeated blocks each consisting of 60 trials ( Fig. 1 B). Each participant

ompleted two identical experimental sessions 4 weeks apart. 

.9. EEG data processing 

All EEG data pre-processing was performed offline using EEGLAB

4.1 ( Delorme and Makeig, 2004 ), and customized script running in

atlab R2017b (Math-Works Inc., USA). The two single blocks of 60

rials each were merged into a single block of 120 trials and then seg-

ented into epochs of 1500 ms each (from − 500 ms (pre-pulse) to

000 ms (post-pulse)). An amplitude of the mean pre-pulse ( − 500 ms to

 100 ms) signal was used to perform baseline correction. Noisy chan-

els were removed following visual inspection, with an average of 3 ± 2

hannels removed out of 63. Early TMS pulse artefact was removed

y performing zero-padding on a window of − 2 ms to 14 ms. Noisy

pochs were then rejected based on the voltage ( ≥ 100 𝜇V), kurtosis ( ≥

), joint probability (single channel-based threshold ≥ 3.5sd) and visual

nspection. The data were reduced into 60 components via principal

omponent analyses (PCA) to minimize overfitting and noise compo-

ents. Then, a first round of fast independent component analysis (fICA)

 Hyvärinen and Oja, 1997 ), further aimed at removing remaining early

MS-evoked and EMG artefacts (1 ± 1 component was removed; range

–3 out of 60). The EEG data were then interpolated for previously zero-

added time window around TMS pulse using linear interpolation, band

ass filtered using a forward-backward 4th order Butterworth filter from

 to 100 Hz, notch filtered between 57 and 63 Hz, and referenced to

lobal average. Data were further reduced into 57 dimensions using

 second PCA followed by a second round of fICA to remove any re-

aining artefact ( Rogasch et al., 2017 ) including eye movement/blink,

uscle noise (EMG), single electrode noise, TMS evoked muscle, car-

iac beats (EKG) and auditory evoked potentials (22 ± 6 components

ere removed; range 18–28 out of 57). A semi-automated artefact de-

ection algorithm incorporated into the open source TMS-EEG Signal

nalyzer (TESA v0.1.0-beta; https://nigelrogasch.github.io/TESA/ ) was

sed during both fICA ( Rogasch et al., 2017 ). Finally, the data were
4 
ow pass filtered with a 4th order Butterworth filter at 50 Hz and previ-

usly removed channels were spherically interpolated. Two participants

ropped out before performing the re-test visit and were not included

n the data analysis and two others were excluded because of bad signal

o noise ratio in the EEG. For a schematic representation of the prepro-

essing steps please see Supplementary Figure S2. 

.10. EEG source reconstruction 

All TMS evoked EEG source reconstruction was performed using

rainstorm ( Tadel et al., 2019 ). First, digitized EEG channel loca-

ions and anatomical landmarks of each subject were extracted from

rainsight TM (nasion ‘NAS’, left pre-auricular ‘LPA’, and right pre-

uricular ‘RPA’ points), and registered onto individual MRI scans in

rainstorm. Next, the EEG epochs, from − 500 ms to 1000 ms with re-

pect to TMS pulse, for each TMS trial were uploaded and average epoch

ime series was generated for each subject. Forward model solution of

euro electric fields was performed using the open MEEG symmetric

oundary element method ( Gramfort et al., 2010 ), all with default pa-

ameter settings ( Tadel et al., 2019 ). Noise covariance was estimated

rom individual trials using the pre TMS (from − 500 ms to − 100 ms)

ime window as baseline. The inverse model solution of the cortical

ources was performed using dynamic statistical parametric mapping

dSPM) and by constraining source dipoles to the cortical surface. The

esulting output of EEG source reconstruction was the current density

ime series for each cortical vertices. 

.11. Source-level metrics 

In order to determinate the network engagement, the average current

ensity timeseries were extracted (after flipping the sign of sources with

pposite directions) from the all 7 RSNs maps projected on surface space

or each individual both for DMN and DAN stimulation ( Fig. 1 D). The

nal timeseries were normalized (z-score) and rectified ( Cheng et al.,

013 ). Then, to assess the threshold for significance of timeseries, a

ootstrap method ( Lv et al., 2007 ) which does not assume normal dis-

ribution of the observations, was applied by shuffling the time samples

f pre TMS activity (from − 500 ms to 0 ms). Specifically, 500 surro-

ated pre-stimulus timeseries were computed to obtain a maximum dis-

ribution (control for type I error) and significance level was set at p <

.01. Finally, both a time-wise permutation testing and a cluster-based

hresholding ( Pernet et al., 2015 ) as a correction for multiple compar-

sons were performed. Specifically, the permutation test transformed

he difference between the TMS condition (from 0 ms to 500 ms) and

he baseline (from − 500 ms to 0 ms) into a z value with respect to a

ull distribution of surrogate conditions difference values, obtained by

wapping condition labels at each of 1000 permutations. The resulting z-

cores were thresholded at p < 0.05. With an additional 1000 iterations

ermutation test, a distribution of cluster sizes of contiguous significant

ime points under the null hypothesis of no condition difference was

omputed, and only clusters that exceeded the 95th percentile of this

istribution were retained. Finally, the AUC was extracted from the sig-

ificant clusters ( Fig. 1 D). 

It is important to mention that for the EEG timeseries it was not

ossible to create a five-levels hierarchical model equivalent to the

WI metrics. Indeed, the current density extracted from the stimulated

egion does not reflect neither the Stim2Brain nor the Stim2Network

evel of the DWI framework. Specifically, both these metrics express the

onnectivity of the stimulated region with either the rest of the brain

Stim2Brain) or the network (Stim2Network) of interest. Such connec-

ivity information is not addressed by EEG-source current density ex-

racted from the stimulated region which simply reflect the engagement

f the such region following a TMS-pulse. Therefore, in this paper we

ocused on the amount of network engagement following an external

erturbation of a single node. 

https://nigelrogasch.github.io/TESA/
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Fig. 2. Specificity of network engagement 

and reproducibility of TMS-EEG measures. 

(A) Individualized DMN and DAN targets 

mapped to MNI space are provided to show 

variability of TMS sites across individuals. 

(B) Average TMS-induced electric field as 

modelled with simNIBS ( Thielscher et al., 

2015 ). The normalized electric field (E- 

field) distribution was thresholded consider- 

ing only the 83% of the maximal E-field. 

For each site/session, the thresholded cluster 

was overlapped with the RSNs parcellation by 

Yeo et al. (2011) ( Schaefer et al., 2018 ) in or- 

der to quantify network engagement. (C) Quan- 

titative spatial overlap analysis ( Dice, 1945 ) 

between thesholded E-field maps and stimu- 

lated networks. High overlap was found be- 

tween the stimulated network and the E-field 

maps both for DMN (top, 91.3%) and DAN (bot- 

tom, 86.9%). (D) The percentage of network 

engagement as measured via EEG source anal- 

ysis for each network is shown, demonstrating 

high propagation specificity after TMS of DMN 

and DAN. (E) Test-retest reliability of source- 

level network engagement showing high repro- 

ducibility across visits for both DMN (top, red 

lines) and DAN (bottom, green lines). (F) Sub- 

ject’s topographical maps for visit 1 (top, magenta) and visit 2 (bottom, cyan) show the reproducibility of TMS-evoked measures. (G) Evoked activity map (left) and 

EEG time series for electrodes F6, C6 and P6 (right) for visit 1 (magenta line) and visit 2 (cyan line). Note: V/m: Volt per meter; AUC: Area under the curve; DAN: 

Dorsal attention network, SM: Sensorimotor network; VIS: Visual network; DMN: Default mode network; FPN: Fronto-parietal network; LIM: Limbic network; AS: 

Anterior salience network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

2

 

n  

s  

T  

c  

t  

f  

s  

b  

t  

a  

s  

s  

o  

m  

t  

m

3

3

 

b  

i  

u  

r

 

t  

(  

p  

h  

f  

o  

M

 

a  

a  

t  

t  

f  

2  

w  

s  

o  

L  

g  

(  

F

 

n  

e  

e  

w  

M  

l  

S  

r

3

 

t  

n  

t  

D  

v  

s  

=  
.12. Control analyses 

To control for the specificity of the stimulated network, intrinsic con-

ectivity measures were extracted for the other RSNs by considering the

treamlines that connect each network’s node. We hypothesized that

MS-evoked network engagement was only predicted by the intrinsic

onnectivity of the stimulated network instead of the connectivity of

he other RSNs. In addition, EEG source metrics were also computed

or the non-stimulated RSNs and correlated with the modularity of the

tructural connectome. Moreover, similarly to a recent work published

y our group ( Ozdemir et al., 2020 ), AUC of the cortical activations in

he resting-state period (from − 500 ms to − 100 ms) preceding TMS were

lso extracted and correlated with DWI measures. We hypothesized that

tructural connectome profiles only predicted TMS-evoked activity in-

tead of conventional resting-state EEG. Finally, to assure the specificity

f the network engagement, electric field induced by TMS pulses was

athematically modelled ( Fig. 1 C) and overlapped with the individual

he RSNs. For further details on method and results please see Supple-

entary Information and Fig. 2 B&C. 

. Results 

.1. Accuracy of TMS targeting, target engagement and reliability 

A set of analyses were conducted to verify the goodness of our dataset

efore proceeding with the exploration of the hierarchical framework,

ncluding accuracy of targeting procedures, location of individual stim-

lation sites, amount of induced activity in each targeted network and

eliability of such activity across sessions. 

To verify the goodness of TMS targeting procedures across par-

icipants, a quantitative spatial overlap analysis (DICE coefficient)

 Dice, 1945 ) between E-field maps and stimulated networks was com-

uted. Results suggest high targeting accuracy for both networks, with

igh overlap between the stimulated network and the E-field maps, both

or DMN (top, 91.3%) and DAN (bottom, 86.9%) ( Fig. 2 B&C). For details
5 
n biophysical modeling please see Methods section and Supplementary

aterials. 

The percentage of network engagement as measured via EEG source

nalysis for each network was also calculated, indexing the amount of

ctivity generated in the target network as compared to the rest of

he brain/other RSNs. Importantly, this metric includes permutation

esting and cluster correction ( Pernet et al., 2015 ) and partially dif-

ers from what was previously published by our group ( Ozdemir et al.,

020 ), where only the stimulated network sources were extracted

ithout taking into account other RNSs. Stimulation of the DMN re-

ulted in greater activity of the DMN network (30.60%) compared all

ther RSNs (DAN = 10.29%, VIS = 11.01%, SM = 12.83%, AS = 12.34%,

IM = 11.40%, FPN = 11.50%). Conversely, stimulation of DAN node en-

aged selectively the DAN network (32.08%) more than all other RSNs

DMN = 14.14%, VIS = 12.16%, SM = 12.52%, AS = 8.95%, LIM = 9.45%,

PN = 10.67%) (see Fig. 2 D). 

To test the reproducibility of TMS evoked cortical activation dy-

amics, TMS-evoked potentials (TEPs) time series were computed for

ach EEG channel across both stimulation conditions and visits. AUC

xtracted from significant clusters were highly reproducible ( Fig. 2 E)

ithin each participant and across visits (DMN stimulation: Visit 1 AUC

 = 242, SD = 67.93 - Visit 2 AUC M = 233.66, SD = 56.96; DAN stimu-

ation: Visit 1 AUC M = 213.45, SD = 61.51 - Visit 2 AUC M = 206.46,

D = 49.62). For further details on test re-test reliability of TEPs please

efer to Supplementary Results. 

.2. Hierarchical framework and TMS-evoked network engagement 

Considering our hierarchical model, a significant positive correla-

ion was found between the structural connectivity of the stimulated

etwork (see level c of the hierarchical model in Methods/ Fig. 1 ) and

he TMS-EEG response ( Fig. 3 A) for both DMN (R 

2 = 23%, p < 0.02) and

AN (R 

2 = 32%, p < 0.006). Results were highly replicable at the retest

isit (DMN: R 

2 = 23%, p < 0.02, DAN: R 

2 = 25%, p < 0.01). Moreover, brain

tructural modularity (Q, level d of the hierarchical model; M = 0.65, SD

 0.2) was also significantly related to the TMS-EEG response ( Fig. 3 B).
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Fig. 3. structural connectivity predictors of 

TMS-EEG propagation. (A) At visit 1 (left 

panel) a significant positive correlation was 

found between the structural connectivity of 

the stimulated network and the TMS-EEG re- 

sponse for both DMN (R 2 = 23%, p = 0.02) and 

DAN (R 2 = 32%, p = 0.006). The same pattern 

was observed at visit 2 (right panel) for both 

DMN (R 2 = 23%, p = 0.02) and DAN (R 2 = 25%, 

p = 0.01). (B) With DMN stimulation (top), a 

significant positive correlation was found be- 

tween brain modularity and DMN response 

(red dots) for both visit 1 (R 2 = 18%, p = 0.04) 

and visit 2 (R 2 = 27%, p = 0.01), while no sig- 

nificant correlation was found for DAN (green 

dots) for both visit 1 (R 2 = 0.002%, p = 0.83) 

and visit 2 (R 2 = 0.005%, p = 0.73). With DAN 

stimulation (bottom), a significant positive cor- 

relation was found between the brain modu- 

larity and the DAN response (green dots) for 

both visit 1 (R 2 = 21%, p = 0.03) and visit 2 

(R 2 = 23%, p < 0.02), while no significant cor- 

relation was found for DMN (red dots) for 

both visit 1 (R 2 = 0.02%, p = 0.45) and visit 2 

(R 2 = 0.01%, p = 0.60). Note: AUC: Area un- 

der the curve; DAN: Dorsal attention network; 

DMN: Default mode network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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pecifically, a positive correlation was found between modularity and

he magnitude of the evoked response within the stimulated network for

oth DAN and DMN stimulation, and this correlation was reproducible

cross the two TMS visits (DMN Visit 1: R 

2 = 18%, p = 0.04; Visit 2:

 

2 = 27%, p = 0.01; DAN Visit 1: R 

2 = 21%, p = 0.03; Visit 2: R 

2 = 23%,

 = 0.02). Interestingly, correlation between modularity and evoked

MS-EEG activity was present only for the stimulated network; there

as no significant correlation between modularity and evoked activity

ithin the DAN when the DMN was stimulated (Visit 1: R 

2 = 0.002%,

 = 0.83; Visit 2: R 

2 = 0.005%, p = 0.73), and between modularity and

voked activity in the DMN when the DAN was stimulated (Visit 1:

 

2 = 0.02%, p = 0.45; Visit 2: R 

2 = 0.01%, p = 0.60). For further details

n the correlation between brain modularity and other RSNs please see

upplementary Results and Figure S3. 

Conversely, no significant correlation was reported between the

MS-EEG response and Brain (Visit 1: DMN: R 

2 = 0.009%, p < 0.65;

AN: R 

2 = 0.08%, p < 0.18; Visit 2: DMN: R 

2 = 0.005%, p < 0.73; DAN:

 

2 = 0.11%, p < 0.14), Stim2Network (Visit 1: DMN: R 

2 = 0.001%, p < 0.85;

AN: R 

2 = 0.01%, p < 0.49; Visit 2: DMN: R 

2 = 0.08%, p < 0.21; DAN:

 

2 = 0.04%, p < 0.26) or Stim2Brain (Visit 1: DMN: R 

2 = 0.03%, p < 0.39;

AN: R 

2 = 0.008%, p < 0.69; Visit 2: DMN: R 

2 = 0.03%, p < 0.38; DAN:

 

2 = 0.0001%, p < 0.99) connectivity ( Fig. 4 A). 

.3. TMS-evoked network engagement in non-targeted RSNs 

Connectivity metrics were also extracted for other RSNs as a con-

rol analysis. Considering TMS-EEG response following DMN stimula-

ion ( Fig. 4 B, left panel; Figure S4), no significant correlations were

ound with the structural connectivity of DAN (Visit 1: R 

2 = 0.001%,

 = 0.85; Visit 2: R 

2 = 0.07%, p = 0.21), VIS (Visit 1: R 

2 = 0.004%,

 = 0.75; Visit 2: R 

2 = 0.00001%, p = 0.98), SM (Visit 1: R 

2 = 0.08%,

 = 0.19; Visit 2: R 

2 = 0.11%, p = 0.09), AS (Visit 1: R 

2 = 0.005%, p = 0.74;

isit 2: R 

2 = 0.11%, p = 0.09), LIM (Visit 1: R 

2 = 0.02%, p = 0.48; Visit 2:

 

2 = 0.07%, p = 0.21) and FPN (Visit 1: R 

2 = 0.006%, p = 0.72; Visit 2:

 

2 = 0.02%, p = 0.44). 

As for TMS-EEG response following DAN stimulation ( Fig. 4 B, right

anel, Figure S4), no significant correlations were found with the

tructural connectivity of DMN (Visit 1: R 

2 = 0.06%, p = 0.25; Visit

: R 

2 = 0.03%, p = 0.37), VIS (Visit 1: R 

2 = 0.04%, p = 0.34; Visit
6 
: R 

2 = 0.05%, p = 0.28), SM (Visit 1: R 

2 = 0.01%, p = 0.58; Visit

: R 

2 = 0.16%, p = 0.07), AS (Visit 1: R 

2 = 0.04%, p = 0.32; Visit 2:

 

2 = 0.08%, p = 0.19), LIM (Visit 1: R 

2 = 0.02%, p = 0.45; Visit 2:

 

2 = 0.02%, p = 0.51), FPN (Visit 1: R 

2 = 0.006%, p = 0.72; Visit 2:

 

2 = 0.03%, p = 0.37). 

.4. Relationship between structural connectivity and resting-state EEG 

In order to demonstrate that the aforementioned results were not a

unction of resting-state brain oscillations, but due to specific activity

licited by TMS instead, source-level activity was computed (i.e. AUC)

or both networks using baseline resting-state EEG data, and further cor-

elated with the structural connectivity of the stimulated network and

odularity. As shown in Fig. 5 A, no significant correlation was found be-

ween the baseline resting-state EEG data and the structural connectivity

f the stimulated network for both DMN (left panel: visit 1: R 

2 = 0.002%,

 = 0.83; visit 2: R 

2 = 0.01%, p = 0.54) and DAN (right panel: visit 1:

 

2 = 0.09%, p = 0.16; visit 2: R 

2 = 0.01%, p = 0.64). 

As shown in Fig. 5 B, no significant correlation was found between

aseline resting-state EEG data and the structural modularity for both

MN (left panel: visit 1: R 

2 = 0.005%, p = 0.74; visit 2: R 

2 = 0.0003%,

 = 0.91) and DAN (right panel: visit 1: R 

2 = 0.002%, p = 0.82; visit 2:

 

2 = 0.03%, p = 0.39). 

. Discussion 

A recent study by our group has used a network-perturbation ap-

roach to characterize individual brain dynamics within discrete brain

etworks with high temporal resolution ( Ozdemir et al., 2020 ), showing

ow source reconstruction of individual TEPs was highly reliable and

ropagated within the stimulated network. Here, we further expanded

his concept showing how the structural modularity of the whole-brain

nd the connectivity of the stimulated network explain individual vari-

bility in propagation of TMS pulses. Results were replicable across

wo separated visits and selective for the stimulated network, support-

ng the relevance of macroscale structural connectivity in predicting

etwork-level response to perturbation. Finally, brain structural wiring

lso seems more related to propagation of activity after perturbation

ather than spontaneous resting-state activity, suggesting perturbation-
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Fig. 4. Control analyses. (A) No significant 

correlation was found between the TMS- 

EEG response and Bra in (Visit 1: DMN: 

R 2 = 0.009%, p < 0.65; DAN: R 2 = 0.08%, p < 0.18; 

Visit 2: DMN: R 2 = 0.005%, p < 0.73; DAN: 

R 2 = 0.11%, p < 0.14), Stim2Network (Visit 1: 

DMN: R 2 = 0.001%, p < 0.85; DAN: R 2 = 0.01%, 

p < 0.49; Visit 2: DMN: R 2 = 0.08%, p < 0.21; 

DAN: R 2 = 0.04%, p < 0.26) or Stim2Brain (Visit 

1: DMN: R 2 = 0.03%, p < 0.39; DAN: R 2 = 0.008%, 

p < 0.69; Visit 2: DMN: R 2 = 0.03%, p < 0.38; 

DAN: R 2 = 0.0001%, p < 0.99) connectivity. (B) 

FPN (top) and VIS (bottom) intrinsic connec- 

tivity do not correlate with visit 1 and visit 

2 of TMS-EEG response both for DMN (left 

panel: visit 1 FPN: R 2 = 0.006%, p = 0.72; VIS: 

R 2 = 0.004%, p = 0.75; visit 2: FPN: R 2 = 0.02%, 

p = 0.44; VIS: R 2 = 0.00001%, p = 0.98) and 

DAN (right panel: visit 1: FPN: R 2 = 0.06%, 

p = 0.25; VIS: R 2 = 0.04%, p = 0.34; visit 2: FPN: 

R 2 = 0.03%, p = 0.37; VIS: R 2 = 0.05%, p = 0.28). 

Note: AUC: Area under the curve; DAN: Dor- 

sal attention network; DMN: Default mode net- 

work. 

Fig. 5. Spontaneous vs Evoked EEG activity. 

(A) While TMS-evoked activity display cor- 

relations with network-level structural con- 

nectivity (red, green), resting-state EEG is 

not correlated with structural connectivity of 

the stimulated network, for both DMN (left 

panel: visit 1: R 2 = 0.002%, p = 0.83; visit 2: 

R 2 = 0.01%, p = 0.54) and DAN (right panel: 

visit 1: R 2 = 0.09%, p = 0.16; visit 2: R 2 = 0.01%, 

p = 0.64). (B) TMS-evoked activity was cor- 

related with brain structural modularity (red, 

green) whereas no relationship was found con- 

sidering resting-state EEG baseline for both 

DMN (left panel: visit 1: R 2 = 0.005%, p = 0.74; 

visit 2: R 2 = 0.0003%, p = 0.91) and DAN (right 

panel: visit 1: R 2 = 0.002%, p = 0.82; visit 2: 

R 2 = 0.03%, p = 0.39). Note: AUC: Area un- 

der the curve; DAN: Dorsal attention network; 

DMN: Default mode network. (For interpreta- 

tion of the references to color in this figure leg- 

end, the reader is referred to the web version 

of this article.) 
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ased approaches as a valuable tool to investigate structure/function

elationship in the human brain. 

Contrary to our original hypothesis, the structural connectivity of

he stimulated network revealed to be more relevant in predicting TMS-

voked activity than the connectivity of either the stimulated region or

he whole brain. Instead, we found that signal propagation induced by

ingle-region stimulation was highly related to the structural connec-

ivity throughout the stimulated network, showing how the amount of

bers within the perturbed network might play a role in the propagation

f action potentials. The idea that the underlying anatomical architec-

ure of the cerebral cortex shapes brain functioning on multiple time

cales has been already amply demonstrated by combining DWI and rs-

MRI techniques ( Honey et al., 2009 , 2007 ). Recent studies have also

valuated the relationship between functional and structural connectiv-

ty using source estimated resting-state EEG recording and probabilistic

ractography ( Chu et al., 2015 ). Moreover, a study reported a temporary

ecrease in the whole-brain correlation between source EEG activity and
7 
WI connectivity measures after TMS in the 𝛼, 𝛽, and 𝛾 frequency bands

 Amico et al., 2017 ). In this context, our result represents the first set of

mpirical evidence that the efficacy of TMS, as a tool to induce network

hanges, is dependent upon the white matter connectivity of the same

etwork, therefore offering crucial insight for the selection of optimal

timulation targets for maximal target engagement (e.g. stimulate net-

orks with higher intrinsic connectivity over highly connected regions)

s well as to predict response to TMS in clinical populations. 

Our results also stress the importance of brain modularity for the

rediction of individual propagation trajectories after TMS. Researches

rom various fields, such as physics or computational biology, have

hown how modular network organization is associated with several

everages, including greater robustness ( Kirschner and Gerhart, 1998 ),

he minimization of wiring costs ( Clune et al., 2013 ) as well as re-

ilience to damage ( Wig, 2017 ). In the context of brain functioning,

revious studies have shown how modular organization of brain net-

orks accounts for better cognitive functions, such as working memory
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 Stevens et al., 2012 ) and general intelligence ( Hilger et al., 2017 ). It has

een suggested that information processing within segregated networks

ub-serves specific cognitive functions, while the exchange of informa-

ion between modules is assumed to be responsible for the coordination

nd integration of cognitive processes ( Gratton et al., 2012 ). The fact

hat we observe a relationship between network engagement induced

y an external perturbation and the amount of brain modularity is in

ine with the aforementioned studies stating that a more segregated

ystem might support more organized network-level information flow

 Baum et al., 2017 ). Interestingly, such relationship was not present for

he non-stimulated network, suggesting how network engagement fol-

owing an external perturbation may constitute a valuable biomarker of

etwork dynamics. 

Among the five hierarchical levels, non-significant correlations be-

ween TMS-evoked network activity and the connectivity of stimulated

egion with the rest of the brain (level a) is less expected than the neg-

tive result for connectivity of the entire brain (level e). One would

ssume that the specific region directly targeted by TMS always carries

ore information than either the whole network or the entire brain, in-

tead our data suggest network structural connectivity as the best predic-

or. This finding highlights the need for investigation of whole-network

ynamics, rather than local ones, when trying to unveil TMS propaga-

ion patterns. Related to this, a previous study showed that the size of

EPs response was related to local property of the stimulated tract (i.e.,

ractional anisotropy), but it did not control for the same measure at the

etwork or at the whole brain level ( Kearney-Ramos et al., 2018 ). Con-

extually, recent evidences demonstrated that, in order to control a given

rain network, a single node modulation is insufficient and a multi-node

ontrollability model is needed instead ( Tu et al., 2018 ), which might

artially explain why the stimulated region connectivity by itself is not

ble to predict network-level response. 

Furthermore, our control analysis revealed that network structural

onnectivity and overall modularity were not related to resting-state

EG data, suggesting that the characteristics of network engagement

ollowing perturbation may significantly index the integrity of struc-

ural networks (outperforming spontaneous brain activity). So far, the

ajority of studies have focused on correlating individual measures

ith data acquired during unconstrained spontaneous activity show-

ng how resting-state correlation patterns between various networks can

e used to predict individual variability in several cognitive functions

 Finn et al., 2015 ), personality traits ( Adelstein et al., 2011 ) and be-

avior ( Fox et al., 2007 ). Nevertheless, recent evidences reported that

he association between cognitive abilities and individual connectiv-

ty patterns could be better highlighted by task-based neuroimaging

 Finn et al., 2017 ; Greene et al., 2018 ). In this framework, a recent

tudy published by our group ( Ozdemir et al., 2020 ) reported a signif-

cant positive correlations between TMS-evoked network engagement

nd high-order cognitive abilities (i.e. abstract reasoning, IQ) which

as not observed when considering resting-state EEG. Present results

emonstrate that brain structural wiring is more related to the propa-

ation of activity after network perturbation than to spontaneous ac-

ivity, implying perturbation-based approaches as a promising tool to

nvestigate structure/function relationship in the human brain. Future

tudies should systematically compare intrinsic network structural con-

ectivity with resting-state, task-based and perturbation-based activity

ata. 

Finally, recent evidences have reported that patients with neurologi-

al and psychiatric diseases might have reduced structural network con-

guration compared to healthy subjects ( Alexander-Bloch et al., 2010 ).

he modulation of rs ‐fMRI networks has become a relevant topic espe-

ially in clinical settings, but requires extreme precision because of indi-

idual differences in fMRI patterns ( Fox et al., 2012 ). In order to modu-

ate pathological network interactions, the majority of TMS studies have

sed intrinsic fMRI connectivity to identify TMS targets ( Eldaief et al.,

011 ). We propose that structural connectivity might be a suitable way

o better engage network dynamics, as the future clinical utility of TMS
8 
s dependent on considering structural architectures as a tool for patient-

pecific dosing. 

In regard of the limitations of the study, a possible caveat is repre-

ented by the unfeasibility of applying the ad-hoc hierarchical frame-

ork used for structural connectivity to TMS-EEG data. In fact, only

ntrinsic network dynamics were extracted from source EEG data (i.e.

verage current density in a given network mask), and even if it would

e possible to extrapolate the current density just from the stimulated

egion this local metric would be partially different from its “equivalent ”

tructural connectivity layers (i.e. layer a and b), representing connec-

ion from the stimulated region and not just activity or fibers related

o the stimulated area. Moreover, source reconstructed TMS-EEG met-

ics might be contaminated by peripherally evoked artifacts, such as

omatosensory and auditory potentials ( Conde et al., 2019 ), therefore

hallenging reliability. However, our control analysis reported no sig-

ificant correlation between TMS-EEG measures and the intrinsic con-

ectivity of the others RSNs, especially those that might be related with

rtifactual activity/propagation (e.g., somatosensory network related to

uscular artifacts), suggesting our findings reflect transcranial evoked

ortical activity alone. 

In conclusion, intrinsic network structural connectivity provides

aluable information to estimate network engagement following con-

rolled, functional networks perturbation. Moreover, brain structural

iring is more related to propagation of activity after perturbation than

pontaneous activity, implying perturbation-based approaches as a valu-

ble tool to investigate structure/function relationship in the healthy

nd pathological brain. 
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