
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2021

Gain signal manifest in prestimulus
neural population dynamics
underlies decision-making

https://hdl.handle.net/2144/43704
Boston University



BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

GAIN SIGNAL MANIFEST IN PRESTIMULUS NEURAL

POPULATION DYNAMICS UNDERLIES

DECISION-MAKING

by

PIERRE-OLIVIER BOUCHER

Honours B.S., University of Toronto, 2011
M.A., University of Waterloo, 2014

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2022



© 2022 by
PIERRE-OLIVIER BOUCHER
All rights reserved



Approved by

First Reader

Chandramouli Chandrasekaran, Ph.D.
Assistant Professor of Psychological and Brain Sciences
Boston University, College of Arts and Sciences

Assistant Professor of Anatomy and Neurobiology
Boston University, School of Medicine

Assistant Professor of Biomedical Engineering

Second Reader

Kamal Sen, Ph.D.
Associate Professor of Biomedical Engineering

Third Reader

Michael Economo,Ph.D.
Assistant Professor of Biomedical Engineering



Every mental representation of a movement awakens to some degree the
actual movement which is its object.
-William James, 1890
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GAIN SIGNAL MANIFEST IN PRESTIMULUS NEURAL

POPULATION DYNAMICS UNDERLIES

DECISION-MAKING

PIERRE-OLIVIER BOUCHER

ABSTRACT

Decision-making is thought to be shaped by factors such as “urgency” and past

outcomes. However, the effect of such factors on neural population dynamics and

its link to decision-making behavior is largely unclear. Here, we addressed this gap

by investigating the neuronal population dynamics in a heterogeneous population of

dorsal premotor cortex (PMd) neurons recorded from monkeys performing a red-green

checkerboard discrimination task.

We investigated effects of urgency by analyzing firing rates of neurons organized by

reaction time (RT) and choice. Dimensionality reduction, regression, and decoding

analyses suggested that prestimulus neural population state covaried with RT but

not choice. Critically, effects were observed within a stimulus difficulty. Subsequent

analysis suggested that faster RTs involved faster pre- and post-stimulus dynamics

whereas slower RTs involved slower dynamics. This relationship between prestimulus

state and RT but not choice suggests a gain signal that amplifies the sensory evidence

and modulates prestimulus activity rather than a bias to choose a particular side.

Furthermore, errors on the previous trial led to shifts in prestimulus state and slower

RTs, suggesting that this gain signal is modulated by trial history and linked to an

internal speed-accuracy tradeoff.

We used drift diffusion and recurrent neural network (RNN) modeling to test if

variability in behavior and neural activity represents fluctuations in a gain signal.

vii



Drift diffusion models with a trial-by-trial varying multiplicative gain signal on the

sensory evidence provided the best description of the RT and choice behavior. Simi-

larly, in optimized recurrent neural networks, trial-by-trial variation in multiplicative

gains on the rectified linear unit (ReLU) nonlinearity were necessary to recapitulate

network dynamics consistent with our PMd data.

Collectively, these results suggest that a gain signal dependent upon previous

trial outcome alters the prestimulus state and is an important component of decision-

related neural population dynamics and behavior.
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Chapter 1

INTRODUCTION

There are 10 minutes to make it to the airport but the GPS says you’re still 12

minutes away. You see a yellow in the distance and you quickly floor it. You get to

the intersection only to realize you’ve run a red light. The sight of the yellow and

red lights result in patterns of neural activity that respectively lead you to respond

quickly to your environment and process feedback (e.g. slow down after running the

red). This process of choosing and performing actions in response to sensory cues

is termed perceptual decision-making (Brody & Hanks, 2016; Brunton et al., 2013;

Cisek, 2012; Gold & Shadlen, 2007; Kiani et al., 2013). It is an integral part of

everyday life and is impacted in many neurological and psychiatric disorders. The

high-level objective of this thesis is to develop a better understanding of how internal

state factors into decision-related dynamics and behavior.

A large body of research in multiple species has attempted to delineate the neural

events that lead to a perceptual decision (Briggman et al., 2005; Carandini & Church-

land, 2013; Cisek et al., 2009; Hanks & Summerfield, 2017; Roitman & Shadlen, 2002).

Classically, much of the research into decision-making has focused on the activity of

single neurons in animals performing decision-making tasks. In these studies, the

most consistent observation is that there is a build up of firing rates of single neurons

before a choice is made by the animal (Hanks et al., 2014; Hanks et al., 2015; Latimer

et al., 2015; Pereira et al., 2021; Roitman & Shadlen, 2002; Shadlen & Newsome, 1996;

Shadlen & Newsome, 2001). This buildup of neural activity has been interpreted as
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a neural signature of the normative diffusion decision model (DDM) posited by Rat-

cliff and colleagues, which posits that external sensory evidence is integrated over

time (see recent reviews by Roger Ratcliff and colleagues, e.g. (Ratcliff et al., 2016).

However, this narrative is challenged by the fact that neurons in decision-related

structures are heterogeneous, with firing rates demonstrating complex time-varying

dynamics over trials (Jun et al., 2010; Mante et al., 2013) and that neural firing rates

can ‘ramp-up’ comparatively instantaneously in tasks where evidence for a decision

is presented piece-meal rather than all at once (Thura & Cisek, 2014). Further work

from Cisek and others have suggested that internal factors such as “urgency”, the

unspecific urge to act, can also lead to such buildups of neural activity (Cisek et al.,

2009; Thura & Cisek, 2014; Thura et al., 2014). How external sensory evidence and

urgency converge to modulate decision-related activity of populations of neurons and

ultimately decision-making behavior is an open question. The specific goal of this

thesis is to resolve this open question and develop a deeper understanding of the

neural population dynamics underlying a decision.

The primary focus of this thesis is how urgency affects prestimulus population

neural state. Our overall hypothesis is that urgency directly acts as a gain signal that

modulates the rate of rise of neural population activity associated with accumulating

sensory evidence, therefore modulating neural states related to motor preparation and

choice (Murphy et al., 2016). Specifically, these fluctuations in gain will manifest as

changes in the prestimulus baseline firing rate (Murphy et al., 2016). This hypothesis

is derived from three pieces of evidence: 1) studies that show that trial-averaged

activity of single neurons correlated with a choice increases faster when evidence is

strongly in favor of the choice (Roitman & Shadlen, 2002; Shadlen & Newsome, 2001),

2) studies that employed a speed-accuracy tradeoff and showed that baseline firing

rates were different for fast compared to slow blocks (Hanks et al., 2014; Heitz &
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Schall, 2012), and 3) studies that demonstrate that urgency acts as a multiplicative

gain signal on the firing rates of neurons associated with an increasing urge to act

(Thura et al., 2014). Urgency and its theoretical accounts are backed by a recently

growing body of modeling (Cisek et al., 2009; Ditterich, 2006) and neurophysiological

evidence derived across species (Carland et al., 2019; Murphy et al., 2016; Thura &

Cisek, 2014).

Theoretical accounts such as the affordance competition hypothesis (Cisek, 2007)

purports that competing evidence accumulating neuronal populations ramp up their

activity towards fixed bounds with the ‘winning’ population state being the first to

reach a bound (Cisek, 2012; Cisek et al., 2009; Roitman & Shadlen, 2002). Thus

such a node becomes the effector state from which broader network activation de-

rives, bringing forth the ‘chosen’ motor action plan (Cisek, 2012; Cisek et al., 2009).

Urgency is a theorized evidence-independent yet time dependent ubiquitous gain sig-

nal on competing, winner-take-all, evidence accumulator neuronal population states

(Murphy et al., 2016). Theory and modeling support the idea that such a signal speeds

up accumulator population states and drives decision-making behavior to maximize

risk/reward rate (Ditterich, 2006).

The DDM is currently a 60 year gold standard model for describing behaviors

such as choice and reaction time (RT) from a wide range of decision-making exper-

iments (Hawkins et al., 2015; Ratcliff, 1978; Stone, 1960). DDMs posit that in a

binary decision there are two bounds towards which evidence accumulators grow over

time as they collect sensory evidence. Once a bound is crossed a decision is made.

Recent modifications to the DDM which include a term for elapsed time, urgency

models, have challenged the standard DDM (Carland et al., 2019; Cisek et al., 2009;

Ditterich, 2006; Hawkins et al., 2015). Importantly, experimental paradigms that

support DDMs tend to feature a time-stationary stimulus for which DDMs were orig-
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inally envisioned (Carland et al., 2019; Stone, 1960). However, when tasks include

non-stationary stimuli that change over the course of a single trial, urgency models

tend to outperform standard DDMs (Carland et al., 2019). In fact even for stationary

stimuli, urgency models and DDMs generally perform equally well (Carland et al.,

2019). While contentious (Carland et al., 2019; Hawkins et al., 2015) growing model-

ing work supports a time-sensitive, evidence-independent gain signal that modulates

decision-making.

Several urgency models demonstrate parity in how successfully they model be-

havioral results but the time-dependent mechanism differs between models (Chan-

drasekaran & Hawkins, 2019). Collapsing bound models are similar to a standard

DDM however the thresholds for making a binary decision approach one another

as a function of elapsed time. Additive and multiplicative urgency models propose

an additional sensory-independent, yet-time dependent gain signal to a fixed bound

DDM that is either added to the sensory evidence accumulation process or acts as

a gain directly on the evidence accumulation process, respectively (Chandrasekaran

& Hawkins, 2019; Cisek et al., 2009; Ditterich, 2006). Either way as time passes the

gain signal grows in size and less evidence is needed to make a decision. So the mech-

anism by which the brain implements speeded decision-making, whether by lowering

the ‘threshold’ that must be reached for a decision to be made or if a gain signal is

added to or directly modifies the evidence accumulation process, remains unclear.

Results from three functional magnetic resonance imaging (fMRI) studies on

speed-accuracy tradeoff (SAT) in humans provide evidence for baseline modification

rather than threshold adjustment in order to implement speeded decision-making

(Bogacz et al., 2010). Consistently across these three studies they found increased

prestimulus activity, in the SAT block as compared to the normal task block, in

pre-supplementary motor area (SMA) and striatum. No baseline increases were de-
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tected in primary sensory or motor areas (Bogacz et al., 2010). Interestingly, SMA

and striatum are associated with motor planning and preparation, possibly suggest-

ing increased priming of motor signals prior to stimulus onset (Bogacz et al., 2010).

Additionally faster RTs are associated with faster rates of firing rate buildup, but

these different trajectories reach similar thresholds before movement onset (Roitman

& Shadlen, 2002; Shadlen & Kiani, 2013; Thura & Cisek, 2014). Consistent with

this, preparatory neural dynamics are found to covary with RTs and explain the

speed of motor response more so than ongoing motor activity (Afshar et al., 2011).

Given evidence of similar neural activity thresholds before movement onset and in-

creased baseline activity when speed is emphasized suggests that the brain employs

fixed evidence thresholds with a variable urgency signal in order to resolve speeded

decision-making tasks.

To summarize thus far, theory suggests a signal that uniformly boosts neural ac-

tivity to resolve neural competition. Such a signal when included in decision making

models outperforms the gold standard model. Additionally, human fMRI research

on SAT supports an urgency model that includes a time-variant signal that boosts

baseline neural activity when speed is emphasized and that originates from motor

preparation areas. Again, our hypothesis states that a variable (Thura et al., 2017)

and time-dependent gain signal directly modulates the population activity associated

with accumulating sensory evidence; directly influencing motor preparation yet indi-

rectly affecting choice (Thura & Cisek, 2017). In order to test this hypothesis we had

2 monkeys indicate the dominant color in a red-green checkerboard discrimination

task with stimuli of varying difficulty. As monkeys performed the task, we recorded

neural activity from the dorsal premotor cortex (PMd), a region generally associated

with the guiding of reach behavior (Churchland et al., 2006; Cisek & Kalaska, 2005).

Several pieces of evidence from this experiment would further support such a
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hypothesis. We predict that: 1. prestimulus neural state will covary with and be

explanative of RTs but will not covary with or be predictive of choice, 2. neural states

associated with faster reaction times will have relatively faster neural dynamics before

and after stimulus onset, 3. outcomes of previous trials will modulate the prestimulus

neural state 4. behavioral results and neural dynamics will be best explained by

behavioral and neurophysiological modeling that includes a multiplicative urgency

signal.

A summary of the results which are generally supportive of our hypothesis and

predictions, follows. Psychometric curves and RT distributions reveal that decision

accuracy increases and RTs decrease with decreasing stimulus difficulty. Decision-

modulated neurons in PMd reveal heterogeneous and complex modulations of firing

rates; not easily understood at the single neuron level. A principal component anal-

ysis (PCA) of mean population firing rate organized by choice and sensory evidence

reveals lawful low-dimensional neural activity that separates as a function of choice

and stimulus difficulty. An additional PCA now conditioned on choice and RT demon-

strates prestimulus neural state covariation with RT. Importantly, this covariation is

observed between and within levels of stimulus difficulty. Further, neural dynamics

associated with faster RTs evolve faster than dynamics associated with slower RTs.

Furthermore, a single-trial analysis method affirms a separation of neural activity, be-

fore stimulus onset, for slow versus fast reaction times but not choice. Regressions and

decoders further confirmed that spiking activity prior to stimulus onset is explanative

of RTs but not predictive of choice. A final PCA conditioned on choice and previous

outcome revealed distinct prestimulus neural states after an error as compared to after

a correct response. Additionally, logistic regression revealed that prestimulus spiking

activity is predictive of the previous trials outcome. Finally, behavioral and recurrent

neural network (RNN) modeling affirm that models that include either a variable
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additive or multiplicative urgency term most faithfully recapitulate behavioral data

and neural dynamics.

Deliverable analyses discussed as per the proposal for this thesis and included

here are: 1. whether within stimulus difficulty RT variability covaries with prestim-

ulus neural activity, 2. whether prestimulus spiking activity is explanative of RT or

predicts choice, 3. whether changes in neural state are driven by previous outcomes.

Findings from the RNN modeling and single trial analysis reported here were com-

pleted by my colleague Tian Wang. Analyses on the speed of neural trajectories and

behavioral modeling were performed by my mentor Dr. Chandrasekaran. This work

was recently submitted in abstract form to a computational neuroscience conference

(Cosyne).
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Chapter 2

RESULTS

2.1 Behavioral results

The data analyzed in this proposal was collected at Stanford University by my thesis

mentor, Dr. Chandrasekaran. The dataset was obtained from two macaque monkeys

(O. and T.) trained to discriminate the dominant color of a central, static checker-

board composed of red and green squares and to report their decisions with arm

movements (Fig 1A). Figure 1B depicts the trial timeline. The trial began when

the monkey held the center target and fixated on the fixation cross. After a jittered

holding time, a red and a green target appeared on either side of the central hold (tar-

get configurations were randomized). After an additional randomized target viewing

time, the checkerboard appeared. The monkey’s task was to select the appropriate

red or green target matching the dominant color of the checkerboard.

There were seven levels of stimulus difficulty parametrized by unsigned coherence

(‘C’, Figure 1C). The measure of color coherence, independent of the actual dominant

color, is the absolute difference in the number of red (R) and green (G) squares

normalized by the total number of squares in the checkerboard (C = 100 × |R −

G|/(R +G)). Signed color coherence (SC), dependent on the actual dominant color

of the checkerboard, is defined as SC = 100 × (R − G)/(R + G). While animals

performed the task, arm and eye movements were recorded. RTs were identified as

the first time when hand velocity exceeded 10% of maximum velocity during a reach.

We analyzed the behavioral performance of the monkeys as a function of the dif-
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Figure 2·1: Recording locations, techniques, task, and discrimination behavior: (A) An illustration of the
setup for discrimination. We loosely restrained the arm the monkey was not using with a plastic tube and cloth
sling and taped a reflective infrared bead on the middle digit of the other hand and tracked it in 3D. We used the
measured hand position to mimic a touch screen and to provide an estimate of instantaneous arm position; eye
position was tracked using an infrared reflective mirror placed in front of the monkey’s nose. (B) Timeline of the
discrimination task. (C) Examples of different stimulus ambiguities used in the experiment parameterized by the
color coherence of the checkerboard cue defined as C = 100 × |R − G|/(R + G). The corresponding SC is defined
as SC = 100 × (R − G)/(R + G). Positive values of SC denote more red than green squares and vice versa. (D,
E) Average discrimination performance (D) and RT (E) over sessions of the two monkeys as a function of the SC of
the checkerboard cue. RT plotted here includes both correct and incorrect trials for each session and then averaged
across sessions. Gray markers show measured data points along with 2 × SEM estimated over sessions. The black
line segments are drawn in between these measured data points to guide the eye and for many data points in d, the
error bars lie within the marker. X-axes in both d, e depict the SC in %. Y-axes depict the percent responded red
in d and RT in e. Also shown in d are discrimination thresholds (M ± SD) over sessions) estimated from a Weibull
fit to the overall percent correct as a function of coherence. The discrimination threshold is the color coherence level
at which the monkey made 81.6% correct choices. 75 sessions for monkey T and 66 sessions for monkey O went into
the averages.
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Figure 2·1: (F) Box-and-whisker plot of RT as a function of unsigned checkerboard coherence. For each coherence,
the central mark of the box indicates the median, the bottom and top edges of the box reflect the 25th and 75th
percentiles, respectively, the maximum whisker length is specified as three times the interquartile range, and outliers
are plotted as plus symbols. There is large variation of RTs both across and within coherences. (G) Location of
caudal PMd (PMdc, location of electrode implantation) along with an example recording from a 16 electrode, 150-µm
spacing U-probe. The brain in this figure is adapted from (Ghazanfar & Santos, 2004).

ficulty of the task (i.e. color coherence). In general across all sessions, the closer a

checkerboard was to a 50/50 split the more errors were made (Fig 1D). We fit the

proportion correct as a function of unsigned coherence using a Weibull function to

estimate slopes and psychometric thresholds (average R2; T=0.99 (over 75 sessions);

O: 0.99 (over 66 sessions); slope (β, M± SD over sessions, T: 1.30 ± 0.16, O: 1.22

± 0.16). Monkey T was better than monkey O in discriminating the color of the

checkerboards (thresholds are computed on a per session basis and averaged over ses-

sions at 81.6% correct, (M ± SD): T, 10.77 ± 1.26%, O:15.42 ± 1.87%, Wilcoxon rank

sum comparing median thresholds, p= 2.91e-23). While there is more RT variability

and monkeys were generally slower for more ambiguous checkerboards, as the box

plots in Fig 1F show, the spread between RTs is still quite large even for the easiest

coherences. A linear regression between unsigned coherence and RT bolstered this

qualitative observation. In Monkey T, coherence, which is a measure of the external

sensory input, explained only ∼10% of the reaction time variability, and in monkey

O only ∼1% of the reaction time variability. It should additionally be noted that

there is no speed versus accuracy manipulation in this simple behavioral paradigm.

Therefore, the remaining variability in RT is likely due to internal factors inherent in

the animal and not driven by the task. Our hypothesis is that one of these internal

factors is urgency.
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2.2 PMd neurons demonstrate complex time-varying pat-

terns of firing rates

Our database consisted of 996 units (546 units in T and 450 units in O, including

both single neurons and multi units) recorded from PMd of the two monkeys over 141

sessions. Spike sorting was used to extract spiking activity from single units. Chosen

units were included as they were well isolated from other units/separated from noise

and modulated activity in at least one task epoch.

To analyze neural firing rates, we convolved spike times with a 20 ms wide Gaus-

sian kernel for each trial in specific time windows. Checkerboard cue (time marker

for stimulus presentation) aligned firing rates were plotted 100 ms before the onset of

the stimulus and until the median RT for the color coherence, up to 600 ms after (Fig

2A). For movement aligned firing rates, spike times were plotted until the negative of

the median RT for the color coherence up to 600 ms preceding movement onset, and

100 ms post movement onset (Fig 2B). Generally the lower the level of coherence,

the longer the firing rate plot. Trials were averaged per unit and within coherence to

visualize firing rate variability across neurons, coherence levels, and reach directions

(Fig 2).

Figure 2 shows several examples of single neurons and the heterogeneity inherent

in our dataset. While many neurons showed reassuring and classical patterns of

firing rates documented by many researchers (Hanks et al., 2014; Latimer et al.,

2015; Roitman & Shadlen, 2002; Shadlen & Newsome, 1996; Shadlen & Newsome,

2001), many other neurons showed heterogeneous and complex patterns of activity

that included both increases and decreases in firing rate during the task. Note, these

neurons still demonstrated covariation with coherence, choice, and RT suggesting that

they were likely still a component of the decision formation process.

Canonically the firing rate activity, of neurons tuned to a preferred reach direc-
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or movement initiation. Error bars (gray outline visible around some lines) denote 2× SEM).
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tion, ramps up over time post stimulus presentation until some time around movement

initiation. These neurons typically have little to no change in activity for the non-

preferred reach direction (Roitman & Shadlen, 2002). While such neural activity is

evident (Fig 2A, B, first two rows), single neuron activity presents in a multitude

of ways post stimulus presentation (Fig 2A,B, rows 3-5). Therefore the firing rate

activity of neurons involved in decision making generally comprise a complex, high

dimensional array of responses. For example, the neuron shown in Fig. 2A (3rd row)

exhibits a near constant firing rate post stimulus presentation and a rapid decrease in

firing rate 200 ms prior to movement onset for both reach directions (Fig 2A, B, row

3). Additionally, different profiles of variable activity related to each reach direction

can exist within one neuron. One such neuron ramps up over time post stimulus

presentation for both reach directions, with these patterns being shifted in time from

one another (Fig 2A, B, 5th row). In summary, this analysis of single neuron activity

suggests that this PMd population is heterogeneous and that choice, coherence, and

RT are encoded across this population. In the next section, we used PCA to exam-

ine how coherence, choice, and RT were represented in the shared activity of these

neurons.

2.3 PCA analyses of firing rates suggest an organized covari-

ation with coherence and choice

To make sense of time-varying firing rates and extract signals associated with decision-

making in this heterogeneous population, I turned to PCA. I performed a PCA on

trial-averaged firing rates conditioned on coherence and choice, and another condi-

tioned on RT and choice. For each PCA, I created a single matrix of all 996 units and

their average firing rate activity windowed about checkerboard onset and organized

by level of condition within a reach direction. More formally, the windowed, trial
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Figure 2·3: Principal components of neural activity organized by coherence separates on choice and
level of coherence (A) The first 4 PCs (X1,2,3,4) of trial averaged firing rates of all 996 neurons from monkeys T
& O and all sessions organized across 7 levels of color coherence, both reach directions, and aligned to checkerboard
onset. Spiking activity was convolved with a 20 ms wide Gaussian kernel for each trial in order to generate FRs. The
gradation of color indicates the level of difficulty for the coherence from purple being the easiest coherence (mostly
one color) to red being the most difficult coherence (a nearly 50/50 split in color). Dashed lines of different colors
represent the PC associated with a right reach whereas solid lines of varying colors represent the PC associated with a
left reach. The black dashed lines indicate the onset of the stimulus and the number to the right of the line indicates
the amount of variance explained by that PC. (B) 3D structure of the first 3 PCs (X1,2,3) aligned to checkerboard
onset. PC 1/2/3 - principal component 1/2/3. Observe how neural activity separates as a function of choice and
coherence < 200 ms post stimulus onset. Red circles indicate checkerboard onset. Notice that the plotting of PCs
extends 200 ms before checkerboard onset. Different colored diamonds indicate 280 ms post checkerboard onset.
Again the gradation of color indicates the level of difficulty for the coherence from purple being the easiest coherence
(mostly one color) to red being the most difficult coherence (a nearly 50/50 split in color). Dashed lines of different
colors represent the PC associated with a right reach whereas solid lines of varying colors represent the PC associated
with a left reach.
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Figure 2·3: (C) Scree plot of the percentage of variance explained by the first 50 components. Black dots represent
each component plotted in order of the amount of variance explained. The red dotted line denotes 1% of variance
and black dots that fall below this explain less than 1% of variance. The first 3 PCs already capture > 80% of the
variance in the firing rate activity, with the 4th component only explaining just over 1% of the variance.

averaged, firing rate activity within a neuron for each condition level were vertically

concatenated into a ctr x N matrix, combining all condition levels (c), windowed time

per level of condition (t), reach directions (r), and neurons (N) into one matrix. The

raw data was preprocessed by subtracting the mean of each column and then divid-

ing by the 95th percentile of that column (i.e. softmax). We entered the data into

the pca function in MATLAB (The MathWorks, Inc., Natick, MA, United States).

Essentially the eigenvalues and eigenvectors of the covariance matrix for the ctr x

N matrix are calculated such that the raw data can be projected along a single or

multiple principal component/s.

To understand how neural activity was organized by coherence and choice, PCA

was conducted first with 7 levels of coherence data across all 996 neurons (Fig 3). The

first principal component (PC) explains ∼50% of variance and appears to represent

the change in firing rates over time post stimulus onset (Fig 3A, panel 1). The

second PC explains ∼15% of variance and separates clearly based on choice and then

on stimulus difficulty within a choice at ∼200 ms post stimulus onset (Fig 3A, panel

2). The first 4 PCs explain > 80% of the variance (Fig 3C). I plotted the first three

PCs in a state space, and found that activity separates as a function of choice as

well as coherence (Fig 3B). In this three dimensional space, activity separates faster

for easier compared to harder choices. This result is reassuring as it recapitulates

the findings from classical studies which demonstrated such features in selected single

neurons (Ding & Gold, 2010; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001).

Our results here replicate this finding at the population level.
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2.4 PCA analyses organized by choice and RT reveal a lawful

covariation of prestimulus firing rates with RT

Organization by coherence and choice is reassuring, but does not provide insight into

mechanism. I conducted a second PCA with the same neural data but grouped by

RT bins, 11 levels representing a spectrum from faster to slower RTs (300-400 ms, to

600-1000 ms), and choice. The first 4 PCs explain > 85% of the variance (Fig 4E).

The first PC again appears to represent the change in firing rates over time, post

stimulus onset, accounting for > 50% of the variance (Fig 4A, panel 1). The second

PC explaining ∼17% of the variance, separates by choice and RT with choice signals

emerging ∼200 ms post stimulus, (Fig 4A, panel 2). These first two PCs appear

remarkably similar to the first two PCs for the PCA conditioned on coherence (Fig

3A & 4A, panels 1 & 2). The third PC, explaining ∼11% of the variance, separates on

RT binning pre/post stimulus onset and separates by choice strongly ∼200 ms post

stimulus onset (Fig 4A, panel 3). The 4th PC accounting for ∼2.5% of the variance

separates, quite noticeably, by RT prior to stimulus onset and the separation persists

until ∼300 ms post stimulus onset, (Fig 4A, panel 4). Thus, multiple PCs (1,3, and

4), and perhaps suggestively not PC 2 (also see Fig 4D), separate prestimulus on

RT grouping in the PCA done for RT bins, yet none of the PCs in the coherence

PCA separate by coherence prior to onset of the stimulus. This is indicative of a

prestimulus state that covaries with the monkeys’ RT and is likely independent of the

presented stimulus and the eventual choice.

A kinematic analysis of neural trajectories (KiNeT) (Remington et al., 2018) re-

veals that faster RTs involved faster pre- and post-stimulus dynamics whereas slower

RTs involved slower dynamics as compared to a reference trajectory (trajectory as-

sociated with middle RT bin, cyan) (Fig 4C, top). Trajectories were also found to be

spatially organized by RT (Fig 4C, bottom). The reference trajectory can be thought



17

of as a unit line, in that all other trajectories are interpreted in relation to it. There-

fore trajectories that are below the reference trajectory in the speed analysis are faster

than the reference in that they reached a point in the Euclidean space at an earlier

time point than the reference trajectory. Given the design of this decision-making

task on static stimuli one could reasonably predict that RT variability should be

mostly driven by the amount of stimulus evidence. Yet there’s a considerable amount

of RT variability even within a stimulus difficulty and stimulus evidence accounts for

maximally 10% of the variance. So, what could account for RT variability within

a stimulus difficulty? Given we observe baseline neural state covariation with RT

across coherences, it stands to reason that we may observe the same type of covaria-

tion within a stimulus difficulty. We propose that baseline neural activity driven by

urgency can partially account for the RT variability that we observe within a stimulus

coherence.

To address this question I performed seven PCAs, one for each coherence level,

on trials selected within a stimulus difficulty to examine if covariation with baseline

state and RT is also observed within a stimulus difficulty. The matrices were organized

RTtr x N. RTt- windowed trials within a single coherence and separated on 11 reaction

time bins , r- reach direction and N- neurons. We found that baseline neural activity

separates by RT bin in a similar fashion to the previous PCA that was done with

RT and across all 7 levels of coherence (Fig 4B, inset). We found similar levels

of covariance between prestimulus neural state and RT variability for stimuli of all

coherence levels (compare Fig 4B & Fig 4B, inset). This suggests that baseline neural

state can partially account for variability in RT within a stimulus coherence and in

the absence of sensory evidence. This implies that neural populations prime the

decision-making process prior to any sensory evidence.

My preliminary analyses described above and in Figures 1-4 have provided three
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Figure 2·4: Principal components of neural activity organized by RT reveals that baseline neural activity
covaries with RT before stimulus onset (A) The first 4 PCs (X1,2,3,4) of trial averaged firing rates of all 996
neurons from monkeys T & O and all sessions organized across 11 RT bins, both reach directions, and aligned to
checkerboard onset. Spiking activity was convolved with a 20 ms wide Gaussian kernel for each trial in order to
generate FRs. The gradation of color indicates the length of RT with purple corresponding to faster RTs to red being
the longest RTs. Dashed lines of different colors represent the PC associated with a right reach whereas solid lines of
varying colors represent the PC associated with a left reach. The black dashed lines indicate the onset of the stimulus
and the number to the right of the line indicates the amount of variance explained by that PC. (B) 3D structure of
the 1st, 2nd and 4th PCs (X1,2,4) aligned to checkerboard onset. PC 1/2/4- principal component 1/2/4. Red circles
indicate checkerboard onset. Notice that the plotting of PCs extends 200 ms before checkerboard onset. Observe how
neural activity separates as a function of RT bin, but not by choice, up to 200 ms before stimulus onset. Different
colored diamonds indicate 280 ms post checkerboard onset. Inset: 3D structure of the 1st, 2nd and 4th PCs (X1,2,4)
for a subset of seven PCAs conditioned on RT bins and reach but performed within a single stimulus coherence.
(C) ”KiNeT” speed (top) and distance (bottom) analyses respectively showing that pre- and post-stimulus speed is
faster for faster RTs as compared to a reference trajectory (cyan, middle trajectory) and that trajectories are spatially
organized by reference time. Abbreviation: a.u. - arbitrary units.
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Figure 2·4: (D) 3D structure of the first 3 PCs aligned to checkerboard onset. PC 1/2/3 - principal component 1/2/3.
Remark how neural activity separates as a function of choice and coherence < 200 ms post stimulus onset (similar
structure to Fig 3B). (E) Scree plot of the percentage of variance explained by the first 50 components. Black dots
represent each component plotted in order of the amount of variance explained. The red dotted line denotes 1% of
variance and black dots that fall below this explain less than 1% of variance. The first 4 PCs already capture > 85%
of the variance in the firing rate activity, with the 5th component only explaining just over 1% of the variance.

tantalizing findings. First, RTs in monkeys performing decision-making tasks are

highly variable perhaps due to internal factors such as “urgency”. Second, a hetero-

geneous population of neurons in PMd covary with choice, coherence and RT. Third,

even before the stimulus onset, firing rates covary with RT suggesting that they could

potentially be linked to the RT variability observed in behavioral results and could

be an index of the internal factors that drive decision-making behavior. Below, I

build on these findings to further understand how internal factors such as urgency,

and external sensory input interact to drive decision-making neural responses and

ultimately decision-making behavior.

2.5 Baseline spiking activity explains RT variability but does

not predict eventual choice

An urgency model predicts and two PCAs suggest that prestimulus FR covaries with

RT but not choice. We expect that more RT variance will be explained by the baseline

spiking activity of a small subset of neurons (e.g. 20-30), from a single brain area, in

a single session than by sensory evidence. However, predicting eventual choice using

baseline spiking activity will be at chance level either in a single session or across

all sessions. These results would be consistent with urgency and the hypothesis that

pre-stimulus activity covaries with RT but not choice.

To determine whether spiking activity explains variance in RTs a linear regression,

using binned spiking activity as the predictor and RT as the outcome, was performed.

1800 ms of spiking activity from each trial (600 ms prestimulus and 1200 ms post-

stimulus) were divided into 20 ms bins (90 bins total) across all neurons within a
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session. 90 matrices composed of a single time interval of spike counts (e.g. 0-20

ms) for all trials, across all neurons were linearly regressed with trial matched RTs.

These fits were used to predict RTs per bin of spiking activity. These predicted RTs

were used to calculate R2 (variance explained) values per bin. The per bin R2 values

were then averaged across sessions. R2 values were compared to the 1st and 99th

percentile of R2 values calculated from regressions of trial shuffled spiking activity

and RTs (shuffled 500 times). To determine whether spiking activity can predict

eventual choice a logistic regression, using binned spiking activity as the predictor

and choice as the outcome was performed. The spiking activity was binned as before

and 90 logistic regressions (1/bin) were computed in order to predict choice based

on spiking activity. Accuracy per bin was calculated from the predictions of the

logistic regression model. The per bin accuracy was then averaged across sessions

and compared to the 99th percentile of accuracy of logistic regression models built on

500 shuffles of binned spiking activity (i.e. choices are randomly paired with spiking

activity).

Spiking activity for each trial was regressed with corresponding RTs and the R2

was calculated. Baseline spiking activity explains ∼25% of the variance in RT in a

single session (Fig 5B) and ∼15% of the variance on average across all sessions (Fig

5C). This is considerably more variance explained than the 99th percentile of trial

shuffled spiking activity regressed with random RTs (Fig 5B, C). Recall that sensory

evidence was able to account for ∼10% of the variance in RTs in monkey T and only

∼1% of variance in RTs in monkey O. Here with at most 30 neurons, from a single

brain area, in a single session prestimulus spiking activity explains more of the RT

variability on average (∼15%) than the actual sensory evidence. However, predicting

eventual choice using baseline spiking activity is at chance level either in a single

session (Fig 5F) or across all sessions (Fig 5G). These results are consistent with
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stimulus onset (0-600 ms). Dotted line is where scatter points would fall if shuffled R2 and real R2 values were
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with gray border) to movement onset (diamonds with gray border). (F) Spiking activity, from the same session that
was used for LFADS, binned in 20 ms intervals was used to build a logistic regression model to predict eventual
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suggesting that real prestimulus neural activity is not predictive of choice.
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urgency and the idea that prestimulus activity covaries with RT but not choice. Such

a finding further bolsters our hypothesis that urgency modulates decision outcomes

even before the stimulus is presented.

PCA results were performed on trial averaged firing rates. However, trial-averaging

can obscure different causes of RT variability. In particular, RT variability could be

caused by differences in speed of neural dynamics, further distance of starting point of

the neural dynamics, or both. To better understand how decision-related dynamics

evolve on single trials, we performed a single-trial analysis on simultaneously col-

lected neural data from PMd. We used Latent Factor Analysis of Dynamical Systems

(LFADS) (Pandarinath et al., 2018) to visualize single trial dynamics. Preliminary

evidence from such an analysis (Fig 5A) demonstrates that fast and slow RTs dif-

ferentiate in neural state space 200 ms prior to stimulus onset at the single trial

level. Note, some of the initial states for slow RTs are also mixed in with fast RTs.

Consistent, with the decoding analyses, initial neural states related to left and right

reach are mixed prior to stimulus onset (Fig 5E). These results further bolster the

notion that baseline spiking activity covaries with RTs but not choice. These results

further bolster the notion on a trial-by-trial basis that faster RTs are associated with

separate prestimulus neural states whereas different eventual choices are represented

in similar states prestimulus.

2.6 The outcome of the previous trial influences baseline

spiking activity

Evidence from this study and previous work (Murphy et al., 2016) demonstrate that

baseline spiking activity is explanative of RT variability. So we became curious as

to what could contribute to neural populations varying from trial-to-trial prior to

any sensory evidence. One source of prestimulus neural variation could be post-error
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slowing (PES) which is a behavioral phenomenon where RT for a trial following an

error trial is slower than the RT following a correct response (Dutilh et al., 2012). We

hypothesize that given that PES causes RT variability, that this variability would also

be accompanied by shifts in trial-by-trial neural state. Hypothetically, such neural

fluctuations could lead to a neural state in which the participant is slower to respond

after an error. So we set out to demonstrate that post-error neural states were distinct

from the neural state prior to an error or after a correct response.

First we performed a behavioral analysis to confirm that PES occurred. All trial

sequences of correct, error, correct and their associated RTs were aggregated across

both monkeys and all sessions (Figure 6D). All sequences with a RT < 200 ms were

removed from the analysis (0.3% of trials). Correct trials following an error were

significantly slower than correct trials immediately preceding the error trial (M ±

SD: 468 ± 118 ms, 449 ± 105 ms; Wilcoxon rank sum comparing median RTs, p=

4.99e-97).

I performed a PCA on trial-averaged FRs from all 996 units conditioned on choice

and trial outcome to assess whether errors led to a shift in the prestimulus neural

state in the following trial. The 4D matrix was organized t x N x r x O: t- windowed

time per trial, N-neurons, r- reach direction, and O- outcome. The PCA revealed,

reassuringly, the first three principal components we have come to expect. In other

words the first PC is a change in FRs before a decision is made, the third PC is

associated with choice and the second PC matches the third PC of the first two PCAs

(Fig 6A, top three panels). Notably for this particular analysis along the fourth PC

we observe a considerable separation between the post error trial and all other trial

types. This separation in neural state space (Fig 6B) occurs before stimulus onset

and endures at least 400 ms past checkerboard onset (Fig 6A, 4th panel). Such a

result suggests that after an error there is a considerable change in neural state space
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onset. (C) Accuracy of logistic regression of spiking activity from the current trial used to predict the outcome of
the previous trial. Orange outline is the 99% confidence interval. (D) Average RTs from all correct, error, correct
sequences found across both monkeys and all sessions. Error bars are 2× SEM .
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which could potentially explain why RTs after an error tend to be slower than RTs

after a correct response. Such a result is also significant as it indicates that baseline

activity is affected by the results of previous trials and it indicates that there are

baseline fluctuations that covary with RT at all. It would suggest that these neural

populations are shifting their activity proactively in order to account for prolonged

deliberation and/or as a strategy to maximize reward rate.

A decoder was built to determine whether spiking activity from the current trial

could predict previous trial outcome. We found that current trial spiking activity

predicts the previous trial’s outcome from before stimulus onset to ∼500 ms after

checkerboard onset at higher than chance levels (Fig 6C). ∼500 ms post-checkerboard

onset, similar to the overall mean response time, spiking activity predicts the outcome

of the previous trial at chance levels. Overall these findings suggest that the outcome

of the previous trial can influence the spiking activity of the current trial. Such a

result further bolsters the claim of a trial-by-trial variation in neural activity and

demonstrates a source of variance to prestimulus neural dynamics.

2.7 Behavioral models that include a gain signal outperform

standard DDMs

Consistent with a stimulus-independent gain signal, prestimulus neural activity co-

varies with and is explanative of RT but does not predict choice. We predicted and

found evidence consistent with the fact that variability in behavior and neural ac-

tivity represents fluctuations in a gain signal. Therefore models of decision-making

that include an urgency signal should outperform models without urgency and further

support our findings thus far. To this end we employed a behavioral modeling tool-

box developed by Dr. Chandrasekaran (Chandrasekaran & Hawkins, 2019), which

allows for the selection and rigorous fitting of various behavioral models built off of
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a standard DDM.

There were four general types of models that can be understood as modifications

upon the standard DDM (Fig 7A:D). Conceptual descriptions of the models are given

here; model equations and variable definitions are given in the methods. Figure 7A

visualizes a modified DDM (DDMSvSzSt) with a variable drift rate (Sv), variable

start point (Sz), variable non-decision time (St) and 2 bounds (A & 0). The bounds

of the model represent evidence thresholds to different choices. Starting point is the

baseline condition from which evidence is accumulated. Drift rate is the rate at which

evidence is accumulated during decision time. Evidence for one choice will move the

evidence accumulator towards the respective bound and vice versa. A decision is

made when the drift rate crosses one of the bounds. The drift rate (v) has a starting

point (z) that varies from trial-to-trial, starting closer to one bound or the other.

Non-decision time (Ter) is time required for stimulus processing and encoding, and

motor preparation/execution (“non-decision” related processes). The predicted RT

is the sum of the non-decision time and decision time.

The collapsing bounds (c) DDM (cDDMSvSz) (Fig 7B) is similar to the last

model but rather than fixed bounds it has collapsing (A(t) & a− A(t)) bounds that

shrink as a function of decision time. As time increases, less evidence is needed to

cross a boundary and therefore make a choice. The urgency (u) DDM (uDDMSbSu)

(Fig 7C) is most similar to a standard DDM in that it has a non-variable drift rate

(v), starting point (z), and non-decision time (Ter). However it differs in that the drift

rate is scaled by a linear gain term (γ(t)) with variable intercept (Sb) and slope (Su).

Here as time elapses the gain signal grows and pushes the evidence accumulator closer

to a bound with relatively less evidence. Finally, the nonlinear urgency (nlu) DMM

(nluDDMSbSu) is identical to the urgency DDM but the variable slope of the gain

term scales a sigmoidal function (Fig 7D). The nonlinear gain has the similar effect
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Figure 2·7: Behavioral models that include an urgency term predict decision behavior better than
models without it (A) Diffusion Decision Model (DDM), models decision making with variable non-decision time
(St), a variable start point (Sz), variable drift rate (Sv) and fixed bounds (A & 0). (B) DDM with fixed non-decision
time (Ter), variable starting point (Sz), variable drift rate (Sv), and collapsing (c) bounds (A(t) & a − A(t)). (C)
Urgency (u) DDM with fixed non-decision time (Ter), a fixed drift rate (v), multiplicative urgency term (γ(t)), and
fixed bounds (A & 0). The urgency term has a variable intercept (Sb) and slope (Su), and acts as a gain on the
drift rate. (D) Nonlinear urgency (nlu) DDM with fixed non-decision time (Ter), fixed drift rate (v), multiplicative
urgency term (γ(t)), and fixed bounds (A & 0). Here the urgency model has a variable intercept (Sb) and variable
slope (Su) which scales a nonlinear sigmoidal function.
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Figure 2·7: (E) Quantile probability plots of the decision making models for monkey T (top row) and monkey O
(bottom row). A quantile probability plot shows the percent correct on the x-axis and response time in milliseconds
on the y-axis. Each column of x’s represents a coherence, of which there are 7 levels. Blue x’s are the proportion
correct for that coherence, whereas yellow x’s are the proportion of errors for that coherence. The x’s are at the 10th,
30th, 50th, 70th, and 90th percentile of the RT distribution for the particular level of coherence and accuracy. The
gray circles are the model predictions for the accuracy and RT distributions. The closer the gray circles are to the
x’s the better the model has predicted the real data. LL - Log Likelihood, AIC - Akaike Information Criterion, BIC -
Bayesian Information Criterion (F) AIC scores for all tested models for both monkeys. The lower the AIC score the
better the model is at predicting behavior. Models are listed in increasing order of AIC score (i.e. they become less
negative).

of pushing the sensory accumulator towards a bound with relatively less evidence.

Overall models with urgency were substantially better at describing the behavior

of the monkeys than models without urgency (e.g. compare uDDM to DDMSvSz)

(Fig 7E,F). Moreover, models with variable gain signals were even better than models

without variability (e.g. compare uDDMSbSu to uDDM) (Fig 7E,F). Together, the

results of behavioral modeling corroborate the observation from the analysis of the

neural population dynamics that a strong component of decision-making behavior is a

stimulus-independent urgency signal which modulates the decision formation process.

2.8 Recurrent neural network models that include either a

multiplicative or additive gain signal recapitulate PMd

neural dynamics

Three RNN models (no gain, additive gain, and multiplicative gain) were built to

test whether a gain signal on firing rates is necessary to recapitulate PMd population

dynamics observed in our data. Figure 8A lays out the basic schematic for the RNN

modeling (further details of modeling and full description of equations (Fig 8A) in

methods). Noisy red and green input signals (ut - input signal, Fig 8A) enter an

RNN optimized (xt - recurrent state, Fig 8A) to perform the red-green checkerboard

discrimination task. The RNN outputs whether it ‘reaches left or right’ (yt - sigmoid

output function, Fig 8A) and an associated RT for each trial. The gain modulated

or unmodulated ‘firing rate’ (rt - rectified linear unit function (ReLU) firing rate
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function, 8B) activity can be read out for each trial and used to analyze population

dynamics. The no gain model directly passes the state of the RNN through a ReLU.

Whereas the additive and multiplicative gain models add and multiply, respectively,

a variable gain with the recurrent state.

The average firing rate of each unit in each RNN model was put into a PCA

conditioned on choice and RT mirroring the PCA performed on real PMd data (Fig

4B). As shown in figure 8B, all 3 models recapitulated stereotypical post-stimulus

population dynamics separating by choice and RT bin. Importantly, both the additive

and multiplicative gain models demonstrated prestimulus neural covariation with RT,

whereas the no gain model showed no prestimulus neural covariation with RT (Fig

8B). So only RNN models that included either an additive or multiplicative gain signal

were able to recreate the full range of dynamics observed in real PMd population data.

Firing rate for each trial from each model was regressed with corresponding RTs

and R2 was calculated for each model in 20 ms bins of firing rate activity. Prestimulus

firing rate explains ∼20% of the variance in RT in both the additive and multiplica-

tive gain model (Fig 8C). This is considerably more variance explained than the 99th

percentile of trial shuffled spiking activity regressed with random RTs (Fig 8C). How-

ever the prestimulus firing rate activity from the no gain model doesn’t explain any

RT variance and is no better than the 99% or 1% shuffled firing rate activity with

RTs (Fig 8C). Consistent with the modeled dynamics, linear regression analyses show

that prestimulus activity in the additive and multiplicative gain RNNs, but not the

‘no gain’ RNN, explains RT .
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Chapter 3

Discussion

3.1 Summary

Previous evidence has demonstrated that neural firing rates increase before a decision

is made (Hanks et al., 2014; Latimer et al., 2015; Roitman & Shadlen, 2002; Shadlen

& Newsome, 1996; Shadlen & Newsome, 2001). Typically this is equated to evidence

accumulation (Ratcliff et al., 2016; Roitman & Shadlen, 2002). However further

evidence challenges this as neurons in decision loci demonstrate heterogeneous and

complex spiking activity (Jun et al., 2010; Mante et al., 2013; Okazawa et al., 2021)

and build up of firing rate activity can also be modified by internal factors such

as urgency (Cisek et al., 2009; Thura & Cisek, 2014; Thura et al., 2014). This

thesis addresses how the spiking activity of a heterogeneous population of neurons is

modulated by sensory evidence and urgency. Our hypothesis is that sensory evidence

will modulate spiking activity associated with choice, whereas urgency, acts as a

gain signal on the evidence accumulation process (Murphy et al., 2016), modulating

prestimulus firing rates.

Several findings, from monkeys trained in a red-green checkerboard discrimination

task, help give credence to the hypothesis of a stimulus-independent, time-dependent

variable gain signal manifest in prestimulus neural activity that drives decision mak-

ing behavior. First, prestimulus neural firing rates covaried with RT, between and

within stimulus difficulties. Additionally ∼15% of the variance in RTs was explained

by prestimulus spiking activity from one brain area alone, whereas levels of stimulus
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coherence maximally accounted for ∼10% of RT variability. Furthermore faster RT

trials were associated with faster neural dynamics Second, prestimulus firing rates

did not covary with choice and prestimulus spiking activity did not perform better

than chance in predicting choice. The covariation of prestimulus neural activity but

not with choice was even found in an analysis of single trials. Third, these findings

were buttressed by behavioral and neurophysiological models that included variable

gain terms outperforming models that lacked such terms. Finally, we found evidence

that neural state changes dramatically as a function of PES and that the current

trial’s baseline spiking activity is influenced by the outcome of the previous trial.

This suggests that trial history contributes to prestimulus neural state and therefore

contributes to a stimulus independent gain signal. Fundamentally, the notable con-

tribution of this thesis is that prestimulus neural dynamics contribute to the timing

of a decision but not directly to the choice itself.

The dataset is rich with explorable avenues but in the interest of the audience’s

attention span (and the writer’s sanity) this discussion will focus on four themes.

First, we predicted that models that included a multiplicative gain signal would best

recapitulate behavior and neural dynamics. While this prediction was true to an

extent, modeling that included either an additive or multiplicative gain signal per-

formed equally well and were indistinguishable. We will explore our own findings and

previous findings to discuss why this could be the case. Second, previous evidence and

our results suggest that urgency impinges upon prestimulus neural variability related

to motor preparation. We will discuss sources of this prestimulus neural variation

and its relation to urgency. Third, we add to the evidence that PES contributes to

changes in prestimulus neural dynamics. This initial finding is suggestive of a multi-

plexing of neural activity involved in urgency signal variation. Finally, we will discuss

decision-making theory, why urgency exists and where such a signal might originate.



33

This will naturally lead into ideas for future research.

3.2 Prestimulus neural variation consistent with a variable

time-dependent and stimulus-independent gain signal

Behavioral results and neural dynamics were best explained by models that included

a variable gain signal as compared to models that didn’t have such a gain signal.

We predicted that behavioral results and neurophysiological dynamics would best be

replicated by modeling that included a multiplicative gain signal (Cisek et al., 2009).

However our results from our models are unable to make reasonable or conclusive

distinctions between additive and multiplicative gain models for behavioral results or

neural dynamics.

Additive gain models, mathematically equivalent to collapsing bound models

(Chandrasekaran & Hawkins, 2019), and multiplicative gain models have similar AIC

scores and neural dynamics across both monkeys. While a cluster of models that

include a multiplicative gain signal outperform the collapsing bound model for mon-

key T, the collapsing bound model slightly outperforms a non-linear multiplicative

gain model for monkey O. Additionally, RNNs with an additive or multiplicative gain

signal recapitulate prestimulus neural dynamics as observed with our PMd data. As

well both models capture about the same amount of prestimulus variance in RTs

(∼20%). After stimulus presentation neither model captures variance in RT from

spiking activity in quite the same way as the real spiking data. Yet each RNN seems

to model some aspect of post stimulus variance. For example, the multiplicative gain

model captures the growth of captured variance while the additive model peaks in

variance explained at about the same time as in the real data. Perhaps such mixed

results indicate that a model that combines a multiplicative and additive gain signal

may be the best model.
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These results and previous evidence (Heitz & Schall, 2012) suggest that there can

be several ways in which the brain solves speeded decision-making tasks. Collapsing

bound/additive gain models and multiplicative gain models are not mutually exclusive

and one study found evidence that 2 non-human primates solved speed-accuracy

tradeoff (SAT) problems consistent with models that included collapsing bounds and

a growing urgency signal (Heitz & Schall, 2012). However, other studies do not

support such a mixed model, but rather support a growing urgency signal model.

These studies support baseline modulation as a means of adjusting decisions under

SAT constraints (Bogacz et al., 2010; Hanks et al., 2014). These studies find baseline

adjustments between different SAT conditions and that firing rates rise to a threshold

that is constant across these different contexts. That being said it could be that

subjects solve speeded decision-making tasks in an individualized manner (Carland

et al., 2019) or alternatively that rise-to-threshold models are incomplete (Heitz &

Schall, 2012).

Generally support for rise-to-threshold models derives from the qualitative as-

sessment that firing rates tend to approach the same threshold in conditions that

manipulate speed versus those that do not (e.g. (Roitman & Shadlen, 2002)). Such

results offer support for fixed bounds by analogy and are by no means conclusive. As

previous findings have demonstrated neural spiking activity is complex and diverse

(Jun et al., 2010; Mante et al., 2013; Thura & Cisek, 2014). Yet readily understood in

the language of dynamical systems (Mante et al., 2013). This study provides further

evidence that the heterogeneous activity of individual units can be readily understood

from their population dynamics where stereotyped neural behavior that is consistent

across stimulus difficulties and choice is apparent. Where proportions of increasing,

decreasing, and peri-movement neurons become difficult to interpret, population level

activity is lawful and hints a low-dimensional neural code that belies decision-making
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behavior.

In fact, in a recent study, neural populations increased in firing rate before a

decision was made for a dot motion task, recapitulating past results. However in

the other group of monkeys performing a human-monkey face morph discrimination

task, the opposite effects were observed where firing rates decreased before a decision

was made (Okazawa et al., 2021). Additionally these results were lawful in that

with varying difficulty the firing rates either increased or decreased proportional to

the difficulty of the respective tasks. These results are difficult to interpret with

classic rise-to-threshold models. However when analyzed under the lens of dynamical

systems, low-dimensional population dynamics emerged and it was found that the

dynamics for both tasks existed on lawful rotated curved manifolds (Okazawa et

al., 2021). Such results support the contention that spiking activity, and therefore

decision-making, can be readily understood from the perspective of several latent

factors (Afshar et al., 2011). Furthermore they suggest that a rise-to-threshold model

for neural activity may be overly simplistic and not a suitable gauge of decision-

making behavior.

Behavioral results, vigour of movement, and neurophysiology, suggest that indi-

viduals vary in their level of impulsiveness (Carland et al., 2019). Notably, there

were no SAT manipulations in this study yet we found evidence for internal SAT

mechanisms. The two monkeys replicated lawful behavioral results whereby as stim-

uli increase in difficulty both monkeys are less accurate and are slower to respond.

Yet each monkey, as evidenced by their distinct RT distributions, respond to stimuli

according to their own embodied risk/reward strategies. Relatedly, most individuals

slow down after committing errors as observed in this study. However some individu-

als actually speed up after making errors (Purcell & Kiani, 2016). Again individuals

demonstrate their different types of strategies towards maximizing reward. Specula-
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tively this could support an individually weighted multiplicative gain signal (Carland

et al., 2019) or multiple individually tuned mechanisms (e.g. collapsing bounds &

multiplicative gain signal) (Heitz & Schall, 2012). It is the subject of future research

as to whether there is only one way to solve speeded decision-making or it relies upon

a confluence of individualized mechanisms.

3.3 Previous findings and our results suggest urgency im-

pinges upon neural variability of motor planning

Prestimulus neural covariation with RT but not choice is surprising in a decision

making task, especially from the lens of standard DDMs. Yet such findings are

consistent with and supportive of theories of embodied cognition and results from

delayed reach tasks. Embodied cognition theories essentially argue that the brain

evolved as a motor output system that phylogenetically added more and more complex

behaviors (Cisek, 2022). Essentially all behaviors and especially brain activity must

be viewed from the context of how it supports or is derived from motor activity.

Now delayed reach to target tasks demonstrate that during a delay period neural

activity related to motor preparation can explain a large percent of variance in RTs

(Afshar et al., 2011). While our results are consistent with this finding, our results

are novel due to important differences between the two tasks. In the delayed reach

to target task the monkey has forward knowledge of which target to press and can

prepare the appropriate motor response during the delay period (30 -1000 ms) (Afshar

et al., 2011). In our task while the targets are presented before the stimulus with

a theoretically long enough delay period as to mitigate better or worse preparation

between randomized delay periods (400-1000 ms), there is no indication of where the

monkey should reach until the stimulus is shown. Presumably given the monkeys

expertise in the task their brains are ‘aware’ that one of two sides will have to be
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reached to. Within this context it makes sense that decisions are made based upon

competing motor plans. All this to say that the results from a decision making task are

highly consistent with a motor preparation study. This within the lens of embodied

cognition suggests that decision making is essentially a competition between motor

plans.

So prestimulus neural activity that we observe could be related to the preparation

of two motor plans. This is fundamental as it suggests the preparation of multiple

motor plans prior to any stimulus onset and that the state of progress of the motor

plan relates to the ultimate RT. We can be confident in this assessment from a

couple pieces of evidence. One PMd has been extensively studied and consistently

shows involvement in motor preparation (Afshar et al., 2011; Cisek & Kalaska, 2005).

Second there is evidence for the formation of multiple motor plans but one is chosen

once sufficient evidence is presented to favor one choice (Cisek & Kalaska, 2005). So

speculatively multiple motor plans are prepared prior to stimulus presentation and

the state of those dynamics contribute to RT variability (Afshar et al., 2011).

Findings of trial-history dependent prestimulus neural covarition suggest potential

sources of neural variation which may impinge upon prepared motor plans. Sources

of variance could include the amount of time there is to prepare appropriate motor

responses (Afshar et al., 2011), how many motor plans are being prepared simultane-

ously (Cisek & Kalaska, 2005), as well as the history of successes and failures of such

motor programs. We have shown evidence for one of these potential sources of neural

variability. Specifically, trial history contributes to variability in prestimulus neural

states and the previous trial’s outcome affects the current trials spiking activity. We

demonstrate in a PES PCA that neural state is considerably different after an er-

ror as compared to after a correct answer. Thura and others similarly found that a

percentage of recorded neurons decreased in firing rate after an error and persisted
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after stimulus onset whereas a similar percentage of neurons increased in firing rate

baseline activity and persisted post-stimulus (Thura et al., 2017) (Thura et al, 2016).

Tantalizingly (Purcell & Kiani, 2016) also report prestimulus neural variation after

an error in one monkey. However this monkey exhibited post error speeding rather

than post error slowing. Yet there were differences in firing rate that corresponded

with the relevant behavioral response; increased baseline firing rate after an error

associated with faster responding. One can only assume that although the behavioral

responses differ, there is a similar type of change in neural state as observed for post

error slowing.

3.4 Theory and Origins

Affordance competition hypothesis states that when a decision maker is put into a

dangerous situation, for example, the actor generally has multiple ways (‘affordances’)

of engaging with the environment (e.g. fight or flight) (Cisek, 2007). The theory

proposes that the brain prepares multiple motor action plans (Cisek & Kalaska, 2005)

and calculates how soon or vigorously to engage a plan as well as the metabolic costs

and probability of success for each plan (Cisek, 2007). The preparation and analysis

of these motor plans constitute the affordance competition.

Urgency is a purported signal that is hypothesized to resolve the neural competi-

tion between separate plans as an evidence-independent time-dependent signal that

promotes the activity of multiple motor plans (Pastor-Bernier et al., 2012). It boosts

the signal for multiple plans to race them to the ‘critical threshold’ needed to bring

about a decision one way or another (Thura & Cisek, 2014). However, what this

arbitrary threshold is, or could be, as discussed previously, is unknown.

Speculatively, it could be that urgency is a drive on heterogeneous populations of

neurons. So urgency drives the rate of neuronal firing uniformly across populations so
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as to speed the building of low-dimensional manifold structure (Okazawa et al., 2021).

Once a low-dimensional manifold is achieved then a decision is made and manifold

activity related to other motor action plans die down.

Results from human fMRI SAT research, behavioral modeling, and computational

modeling all support that there is a time-dependent gain signal that modifies the ac-

cumulation of sensory evidence. However where this signal originates from and in

what form remains unclear. fMRI research suggests premotor areas such as pre-SMA

and the striatum, the input nucleus of the basal ganglia, show increased activation

in prestimulus blocks where speed is emphasized versus when it is not (Bogacz et al.,

2010). Relatedly another study found evidence of an urgency type signal coming from

the basal ganglia (Thura & Cisek, 2017) . This study found that neural activity in

basal ganglia did not relate to the deliberation process for the eventual choice but

rather influenced the decision making process indirectly by acting as a gain signal for

sensory evidence in PMd and primary motot cortex (Thura & Cisek, 2017). Activ-

ity in these regions prior to stimulus onset and their implication in non-deliberative

processes of decision-making is consistent with research implicating the SMA, stria-

tum and basal ganglia in motor planning (Nachev et al., 2008; Thura & Cisek, 2017;

Thura et al., 2017) and with urgency theory (Cisek et al., 2009). The implication of

these regions as potential sources of urgency make them attractive targets for further

research on how their activity influences population dynamics.

3.5 Future Directions

Hypothetically a post correct state evolves faster than a post error state as post correct

states are associated with a faster RT. As we have observed from the KiNeT analysis,

faster RT states are associated with faster RTs. I propose another KiNeT analysis

where the error state is used as the reference trajectory and post error and correct
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states are compared to it. Such an analysis would be a key link in demonstrating

that previous outcomes lead to faster or slower dynamics (i.e. variable urgency) and

therefore corresponding RTs.

It is unclear whether there are specific subpopulations of neurons that are mod-

ulated by urgency or if urgency modulates neuronal activity uniformly. I propose to

regress the spiking activity of different classes (i.e. as classified in (Chandrasekaran

et al., 2017) of neurons and randomized sets of neurons with RTs to determine if

RT variability is better explained by certain classes of neurons or a ‘zoo’ of neurons.

Such an analysis would reveal how urgency affects neuronal populations and drives

decision-making behavior.

Can the current trial’s outcome (e.g. error) be predicted from prestimulus activ-

ity? Such an analysis, using logistic regression, could reveal that there are neural

states that coincide with more impulsive/urgent behavior that lead to hasty incorrect

responding.

Finally, poststimulus neural dynamics reveal structured and stereotyped multi-

dimensional activity that covaries with RT and is predictive of choice. Similar but

perhaps less well defined structure is found in prestimulus neural activity as it was

found to covary with RT. However we believe that these dynamics belie further pres-

timulus activity structure to uncover. If this is the case then what kind of dynamics

can be extracted from prestimulus activity? I propose an exploratory analysis where

prestimulus neural activity would be conditioned on 2 of the following 3 variables:

RT, delay between targets and stimulus, and previous trial outcome. Preparatory

activity as suggested by Afshar and others (2011) has some level of structure related

to latent dimensions however the preparatory activity exists in a larger subspace than

neural activity associated with movement onset which is more stereotyped (Afshar

et al., 2011). Importantly, prestimulus dynamics lead into post-stimulus dynamics so
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how might prestimulus dynamics further influence behavior once a stimulus is shown?

3.6 Conclusions

Prestimulus neural activity was found to covary with RTs. This activity was expla-

native of RTs but not predictive of choice. Neural states associated with faster or

slower RTs had neural dynamics that evolved faster or slower respectively. These

results are supported by behavioral models and RNN modeling revealing that when

a time-dependent gain signal is included, behavioral results are better predicted and

PMd neural dynamics are more accurately recapitulated. Finally, prestimulus neural

states after an error differed considerably after an error as compared to after a cor-

rect response and there was evidence that previous trial outcome affected the current

trial’s prestimulus spiking activity. All together this data supports a variable trial-

history and time-dependent yet stimulus-independent gain signal which controls the

speed of prestimulus dynamics and acts as a gain on sensory evidence accumulation.
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Chapter 4

Methods

Several method sections are adapted from Chandrasekaran and others 2017 as this

thesis and that study share the same data set.

4.1 Subjects

Experiments were performed using two adult male macaque monkeys (Macaca Mu-

latta; monkey T, 7 years, 14 kg & monkey O, 11 years, 15.5 kg) trained to touch

visual targets for a juice reward. Monkeys were housed in a social vivarium with a

normal day/night cycle. Protocols for the experiment were approved by the Stanford

University Institutional Animal Care and Use Committee as the experiments were

conducted at Stanford University. Animals were initially trained to come out of their

housing and to sit comfortably in a chair. After initial training, monkeys underwent

sterile surgery where cylindrical head restraint holders (Crist Instrument Co., Inc.,

Hagerstown, MD, United States) and standard recording cylinders (Crist Instrument

Co., Inc.) were implanted. Cylinders were placed surface normal to the cortex and

were centered over caudal dorsal premotor cortex (PMdc) (+16, 15 stereotaxic co-

ordinates). The skull within the cylinder was covered with a thin layer of dental

acrylic.
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4.2 Apparatus

Monkeys sat in a customized chair (Synder Chair System, Crist Instrument Co.,

Inc.) with their head restrained. The arm that was not used to respond in the task

was gently restrained with a tube and cloth sling. Experiments were controlled and

data collected using a custom computer control system (Mathworks’ xPC target and

Psychophysics Toolbox, The Mathworks, Inc., Natick, MA, United States). Stimuli

were displayed on an Acer HN2741 monitor approximately 30 cm from the monkey.

A photodetector (Thorlabs PD360A, Thorlabs, Inc., Newton, NJ, United States) was

used to record the onset of the visual stimulus at a 1 ms resolution. A small reflective

spherical bead (11.5 mm, NDI passive spheres, Northern Digital, Inc., Waterloo,

ON, Canada) was taped to the middle finger, 1 cm from the tip, of the active arm

of each monkey; right for T and left for O. The bead was tracked optically in the

infrared range (60 Hz, 0.35 mm root mean square accuracy; Polaris system, NDI). Eye

position was tracked using an overhead infrared camera with an estimated accuracy of

1° (ISCAN ETL-200 Primate Eye Tracking Laboratory, ISCAN, Inc., Woburn, MA,

United States). To get a stable image for the eye tracking camera, an infrared mirror

(Thorlabs, Inc.) transparent to visible light was positioned at a 45° angle (facing

upward) immediately in front of the nose. This reflected the image of the eye in the

infrared range while allowing visible light to pass through. A visor placed around the

chair prevented the monkey from touching the juice reward tube, infrared mirror, or

bringing the bead to its mouth.

4.3 Task

Experiments were made up of a sequence of trials that each lasted a few seconds.

Successful trials resulted in a juice reward whereas failed trials led to a time-out of

2-4 s. A trial started when a monkey held its free hand on a central circular cue
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(radius = 12 mm) and fixated on a small white cross (diameter = 6 mm) for ∼350-

400 ms. Then two isoluminant colored (red and green) targets appeared 100 mm

to the left and right of the central hold cue. Targets were randomly placed such

that the red target was either on right or the left trial-to-trial, with the green target

opposite the red one. In this way color was not tied to reach direction. Following an

additional center hold period (400-900 ms) a static checkerboard stimulus (15 x 15

grid of squares; 225 in total, each square: 2.5 mm x 2.5 mm) composed of isoluminant

red and green squares appeared superimposed upon the fixation cross. The monkey’s

task was to move their hand from the center hold and touch the the target that

matched the dominant color of the checkerboard stimulus for a minimum of 200 ms

(full trial sequence; Fig 1B). For example, if the checkerboard stimulus was composed

of more red squares than green squares the monkey had to touch the red target in

order to have a successful trial. Monkeys were free to respond to the stimulus as

quickly or slowly as they ‘chose’ There was no delayed feedback therefore a juice

reward was provided immediately following a successful trial (Roitman & Shadlen,

2002).

The checkerboard stimulus was parameterized at 14 levels of red (R) and com-

plementing green (G) squares ranging from nearly all red (214 R, 11 G) to all green

squares (11 R, 214 G) (example stimuli; Fig 1C). These 14 levels are referred to as

signed coherence (SC), defined as SC = 100 × (R − G)/(R + G) (R: 4%:90%, G:

-4%:-90%). Correspondingly there are seven levels of color coherence, agnostic to the

dominant color, defined as C = 100× |R−G|/(R +G) (4-90%).

The hold duration between the onset of the color targets and onset of the checker-

board stimulus was randomly chosen from a uniform distribution from 400-900 ms

for Monkey T and from an exponential distribution for Monkey O from 400-800 ms.

Monkey O attempted to anticipate the checkerboard stimulus therefore an exponen-
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tial distribution was chosen to minimize predictability.

4.4 Training

Operant conditioning was used to train the monkeys. Monkeys were rewarded for

arm movements toward the screen and learned to take pieces of fruit from the screen.

Once the monkey acquired the reach-reward association, the animal was then trained

to hold a center cue for a juice reward. The position and color of the target was

randomized so that the animal learned to reach to different positions on the screen.

Then they were trained on a simplified task design where they briefly held the center

cue and then the checkerboard stimulus, nearly all red or green, appeared for 400-

600 ms before the two targets appeared. Monkeys were rewarded for touching the

target that matched the dominant color of the checkerboard. The association of

the checkerboard color and the correct target was reinforced by interleaving two-

target ‘decision’ blocks with single-target blocks. Monkeys reliably reached to the

target that matched the checkerboard stimulus after several weeks of training with

the interleaved block design. The paradigm was then switched such that the targets

appeared before the checkerboard onset. Monkeys were trained to maintain the center

hold for 300-1800 ms post target onset and prior to checkerboard onset by rewarding

them with juice. When the animal reliably held the center hold between target and

checkerboard onset, the monkey was no longer rewarded for holding. Over subsequent

weeks more difficult stimuli were presented to the monkey and the maximum hold

time was tapered to 900 ms. The monkeys were encouraged to perform the task as

quickly and as accurately as possible while impulsivity was discouraged by including

timeouts after unsuccessful trials.
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4.5 Electrophysiological Recordings

Electrophysiological recordings were guided by stereotaxic coordinates, known re-

sponse properties of PMd, and neural responses to muscle palpation. Recordings

were made anterior to the central sulcus, lateral to the precentral dimple and lateral

to the spur of the arcuate sulcus. Electrodes were placed in the PMd contralateral to

the dominant hand of the monkey (T: right arm, O: left arm). Recording chambers

were placed surface normal to the cortex to align with the skull of the monkey and

recordings were performed orthogonal to the surface of the brain. Estimates of up-

per and lower arm representation was confirmed with repeated palpation at a large

number of sites to identify muscle groups associated with the sites.

Single electrode recording techniques were used for a subset of the electrophysio-

logical recordings. Small burr holes in the skill were made using handheld drills. A

Narishige drive (Narishige International USA, Inc., Amityville, NY, United States)

with a blunt guide tube was placed in contact with the dura. Sharp FHC electrodes

(> 6 MΩ) (FHC, Inc., Bowdoin, ME, United States) penetrated the dura and every

effort was made to isolate, track, and stably record from single neurons.

180 µm thick 16-electrode linear multi-contact electrode (U-probe; interelectrode

spacing: 150 µm, contact impedance: ∼100 kΩ) recordings were performed similarly

to single electrode recordings with some modifications. Scraping away any overlying

tissue on the dura, under anesthesia, and a slightly sharpened guide tube aided in

slow U-probe penetration (∼2-5 µm/s). U-probe penetration was stopped once a rea-

sonable sample of neurons was acquired, potentially spanning multiple cortical layers.

Neural responses were allowed to stabilize for 45-60 minutes before normal experimen-

tation began. Monkey T had better recording yields on average (∼16 units/session)

than monkey O (∼9 units/session). Additionally, lowering the electrode necessitated

careful observation to ensure the electrode did not bend, break at the tip or exces-
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sively dimple the dura. Therefore it was not possible to precisely localize the U-probes

with a grid system between sessions.

4.6 Unit Selection and Classification

The electrophysiological recordings consist of 996 units (546 units in T and 450 units

in O, including both single neurons and multi-units) recorded from PMd of the two

monkeys as they performed the task over 141 sessions. Chosen units were included as

they were well isolated from other units/separated from noise and modulated activity

in at least one task epoch.

U-probes were useful for recording from isolated single neurons as U-probes are low

impedance (∼100 kΩ) with a small contact area. A conservative threshold was used to

maximize the number of well defined waveforms and to minimize contamination from

spurious non-neural events. Single neurons were delineated online by the ‘hoops’ tool

of the Cerebus system software client (Blackrock Microsystems, Salt Lake City, UT,

United States) after the electrodes had been in place for 30 - 45 minutes. When a spike

was detected via thresholding, a 1.6 ms snippet was stored and used for subsequent

evaluation of the clusters as well as modifications needed for spike sorting.

Some electrodes in U-probe recordings captured mixtures of 2 or more neurons,

well separated from each other and noise. In the majority of cases the waveforms were

separable and labeled as single units. These separations were verified by viewing the

waveforms in principal component space using custom code in MATLAB (The Math-

Works, Inc., Natick, MA, United States). MatClust the MATLAB based clustering

toolbox or Plexon Offline Sorter (Plexon, Inc., Dallas, TX, United States) were used

to adjust the clusters that were isolated online.

Recording activity labeled as ‘multi-units’ were mixtures of 2 or more neurons

not separable using a principal components method or consisted of recordings with
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waveforms only weakly separable from noise.

The number of interspike interval (ISI) violations after clustering and sorting was

used to mitigate subjectivity in the classification of units. A unit was labeled as a

single neuron if the percentage of ISI violations (refractory period of ≤ 2 ms) was

≤ 1.5% otherwise it was labeled as a multi-unit. 801/996 PMd units were labeled

as single neurons (T: 417, O: 384, mean ISI violation= 0.43%, ∼0.13 additional

spikes/trial). Therefore 195/996 units were labeled as multi-unit (T: 129, O: 66,

mean ISI violation= 3.36%, ∼1.4 additional spikes/trial).

Units from both monkeys were pooled together as the electrophysiological charac-

teristics were similar. Change of mind trials (∼2-3%) were excluded from averaging as

the change in reach direction mid-movement execution made the assignment of choice

ambiguous. Incorrect and correct trials arranged by choice were averaged together.

4.7 Effects of coherence on accuracy and reaction time (RT)

Behavior was analyzed by fitting psychometric and RT curves on a per-session basis

and averaging the results across sessions. Behavioral data was analyzed in the same

sessions as the electrophysiological data. In total there were 75 sessions for monkey T

(128,989 trials) and 66 sessions for monkey O (108,344 trials). On average there were

∼1,500 trials/session. Both incorrect and correct trials for each SC were included for

estimating RT/session.

Data were fit to a psychometric curve to characterize how discrimination accuracy

changed as a function of stimulus coherence. For each session a monkey’s sensitivity

to the checkerboard stimulus was estimated by estimating the probability (p) of a

correct choice as a function of the color coherence of the checkerboard stimulus (c).

The accuracy function was fit using a Weibull cumulative distribution function.
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Weibull cumulative distribution function:

p(c) = 1− 0.5e−( c
α
)γ (4.1)

The discrimination threshold α is the color coherence level at which the monkey

would make 81.6% correct choices. The threshold is the mean α across sessions. The

parameter γ describes the slope of the psychometric function. Threshold and slope

parameters were fit per session and averaged across sessions. Mean and standard

deviation of threshold estimates are reported in Fig 1D. R2 values from the fit are

provided in the text.

Mean RT was calculated per SC on a session-by-session basis and averaged across

sessions. Results are displayed in Fig 1E with error bars denoting 2×SEM and lines

between the averages to guide the eyes. RT was also regressed with log coherence

(c) per session. The fit coherence-RT model was used to predict RTs and calculate

R2 on a per session basis. R2 values were averaged across sessions per monkey and

are reported in Fig 1F as percentage of variance explained. The general framework

and equations for linear regression and R2 calculation are provided in the following

section.

4.8 Fits generated by linear regression and logistic regression

(decoder)

Throughout the thesis linear and logistic regressions (decoders) were used to deter-

mine the variance explained by spiking activity and whether spiking activity was

predictive of certain outcomes, respectively. To determine whether spiking activity

explains variance in RTs, 1800 ms of spiking activity from each trial (600 ms prestim-

ulus and 1200 ms post-stimulus) were divided into 20 ms bins (90 bins total) across

all neurons within a session. 90 matrices composed of a single time interval of spike
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counts (e.g. 0-20 ms) for all trials, across all neurons were linearly regressed with

trial matched RTs. Fits were used to predict RTs based on spiking activity, which

were used to calculate R2 values per bin. The per bin R2 values were then averaged

across sessions. R2 values were compared to the 1st and 99th percentile of R2 values

calculated from regressions of trial shuffled spiking activity and RTs (shuffled 500

times).

Linear Regression:

RT (i) = b+mi (4.2)

i - independent variable (i.e. coherence or binned spikes)

b - intercept

m - slope of regression

R2 calculation:

R2 = 1− (RTi − R̂T i)
2

(RTi −RT i)2
(4.3)

R̂T i - predicted RT

RT i - mean RT

To determine whether spiking activity can predict eventual choice or previous

trial outcome a logistic regression, using binned spiking activity as the predictor and

choice as the outcome was performed. The spiking activity was binned as before

and 90 logistic regressions (1/bin) were computed in order to predict choice based

on spiking activity. Accuracy per bin was calculated from the predictions of the

logistic regression model. The per bin accuracy was then averaged across sessions

and compared to the 1st and 99th percentile of accuracy of logistic regression models
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built on 500 shuffles of binned spiking activity (i.e. choices are randomly paired with

spiking activity).

Logistic Regression:

f(sb) =
1

e−(asb+b)
(4.4)

sb - binned spiking activity

a - slope of linear equation

b - intercept of linear equation

Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm is used to find the

optimal fit for the slope (a) and intercept (b) (Shanno, 1970). L2 regularization is

used to simplify the model and decrease the collinearity of coefficients.

Cost function for logistic regression:

J =
λ

2
Σβ2 (4.5)

J - cost associated with coefficients

λ - penalty term

β - coefficients of the model

Peri-stimulus spiking activity was used to predict the choice in the current trial

and outcome of the previous trial. 5 models were created via k-fold cross validation

and loss was calculated for each model and accuracy is reported as accuracy = 1 −

mean(loss). The following equation is used to produce the outputs of the system.

Either, -1 if f(sb) < 0.5 or 1 if f(sb) > 0.5.
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4.9 General principal component analysis (PCA) procedure

of PMd firing rates

PCA was used to examine firing rate variance in the recorded PMd neural population.

PCA reveals dimensions that explain a large percentage of the data while making few

assumptions about the underlying structure of the data. The dimensions extracted

by PCA may not always be meaningful however they often align well with behavioral

variables.

The general procedure for performing a PCA involved averaging firing rates (FR)

within units (U) across trials organized by reach (Re) and then by coherence (C),

reaction time (RT), or past outcome (PO). Unit firing rates were calculated per trial

by convolving spike times aligned to checkerboard onset (∼-600 ms: ∼1200 ms) with

a 20 ms wide Gaussian kernel. Typical matrix organization was FR x U x Re x

C/RT/PO (∼1800 x 996 x 2 x 7/11/2). The 95th percentile of column (i.e. unit) was

calculated on this data matrix. The per column (i.e. unit) mean was subtracted from

the data matrix to center the data. Then the mean centered matrix was ‘softmax’

normalized by dividing by the 95th percentile of the ‘raw’ data matrix. Softmax

normalization reduces the bias of units with high firing rates and ensures that each

unit has roughly the same overall variability across stimulus coherences. This data

was entered into the pca function in MATLAB. The score output from this function

is used to project the dimensions that explain the most neural variance into state

space.

4.10 Behavioral Modeling

Several behavioral models were built to test whether behavioral models that in-

clude urgency terms would outperform their non-urgency counterparts. Below are

the equations, with explanations for the variables, from which the behavioral models
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are built. The description of the standard drift diffusion model (DDM) (figure not

shown) is presented first and presentation of the models continues in the order that

they are presented in figure 7. Features such as variable drift rate, starting point,

non-decision time, gain term can be mixed and matched with the any of the models.

Model equations and explanations of variables are adapted from (Chandrasekaran &

Hawkins, 2019). For further context on these models please refer to Chandrasekaran

and Hawkins, 2019.

Standard DDM:

x(t+∆t) = x(t) + v∆t+ s
√
∆t+N(0, 1) (4.6)

x(t) is the state of the decision-formation process at time t (i.e. decision variable),

v is the drift rate (i.e. rate of sensory evidence accumulation), ∆t is the time step of

the process, s is the standard deviation of the moment-to-moment noise, Brownian

motion, of the decision-formation process, and N(0, 1) is a random sample from the

standard normal distribution with a mean of 0 and standard deviation of 1. A re-

sponse is made when x(t+∆t) ≥ aupper or x(t+∆t) ≤ alower. Whether a response

is correct or not is determined from the boundary that was crossed and the sign of

the drift rate. v > 0 implies upper boundary corresponds to the correct response and

v < 0 implies lower boundary corresponds to the incorrect response. For simplicity

alower = 0 & aupper = A.

DDM with variable drift rate (vij), starting point (sz), and non-decision
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time (Ter,j):

xj(t+∆t) = xj(t) + vij∆t+ s
√
∆t+N(0, 1) (4.7)

xj(0) ∼ U(z − sz
2
), z +

sz
2

(4.8)

vij ∼ N(vi, sv) (4.9)

Ter,j ∼ U(Ter −
st
2
, Ter +

st
2
) (4.10)

Similar to the standard DDM model, however here the decision variable (xj(t +

∆t)) has a variable drift rate (vij) which varies as a function of condition (i) and

particular trial (j). The initial value of the decision variable (xj(0)) has a variable

starting point (z- midpoint between bounds, sz - variable start point constant) deter-

mined from a uniform distribution (U). The variable condition and trial variable drift

rate is pulled from a normal distribution (N) with a mean of the condition average

drift rate (vi) and standard deviation is the variable drift rate constant (sv). The

trial variable non-decision time (Ter,j) is pulled from a uniform distribution with a

range determined by the constant non-decision time (Ter) and variable non-decision

time constant (st).

DDM with collapsing bounds:

alower(t) = a(1− e(
t
λ
)k)(0.5− a′) (4.11)

aupper(t) = a− alower(t) (4.12)

alower/upper(t)- position of the lower/upper boundary at time t

a - initial position of upper boundary at t=0

a′ - asymptotic boundary setting (where lower and upper boundary meet; a′ = 0.5)

λ - scale parameter of Weibull distribution

k - shape parameter of Weibull distribution; the Weibull function is used here to
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determine the shape of the collapsing bounds as the function can approximate

different distributions (e.g. exponential) (Chandrasekaran & Hawkins, 2019).

DDM with variable urgency signal:

E(t) = v∆t+ s
√
∆tN(0, 1) (4.13)

x(t+∆t) = x(t) + E(t)γ(t) (4.14)

γj(t) = bj +mjt (4.15)

γj(t) = bj +mj(1− e(
−t
λ
)k) (4.16)

bj ∼ U(b− sb
2
, b+

sb
2
) (4.17)

mj ∼ U(m− sm
2
,m+

sm
2
) (4.18)

E(t) - momentary sensory evidence at time t

γ(t)- magnitude of urgency signal at time t

bj - trial variable urgency intercept (chosen from a uniform distribution)

sb - variable intercept constant

mj - trial variable urgency slope (chosen from a uniform distribution)

sm - variable slope constant

λ - scale parameter of sigmoid

k - shape parameter of sigmoid

4.11 Calculation of AIC and BIC

Three different measures for model selection were calculated to test the goodness of

fit of behavioral models for RT and accuracy data. First an approximation to the

maximum likelihood estimation, Quantile Maximum Products statistic (Heathcote

et al., 2002), is calculated and used to calculate Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC). AIC and BIC are similar in calculation,
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differing in the size of the penalty term for model complexity, and are therefore used

to distinct ends (Aho et al., 2014; Chandrasekaran & Hawkins, 2019). AIC (Akaike,

1974) is useful for model exploration when the expectation is that models will grow in

complexity with increased sample size. AIC treats false negatives as worse than false

positives with a lesser penalty for model complexity than BIC and is used to judge

between models that are assumed to be incorrect (Aho et al., 2014; Chandrasekaran

& Hawkins, 2019). BIC (Schwarz, 1978) on the other hand treats false positives more

harshly with a larger penalty term for extra parameters. The expectation here is that

the correct model has been chosen and that the model will stabilize with increased

sample size (Aho et al., 2014; Chandrasekaran & Hawkins, 2019). Lower AIC & BIC

and higher log-likelihood, respectively, indicate better model approximation of the

actual data. These scores are not objective measures of a model’s goodness of fit but

rather are meant to be used as a comparison between different models.

Akaike Information Criterion (AIC):

AIC = 2k − 2ln(L̂) (4.19)

k - number of model parameters

L̂ - maximized value of the likelihood function

Bayesian Information Criterion (BIC):

BIC = kln(n)− 2ln(L̂) (4.20)

k - number of model parameters

n - sample size

L̂ - maximized value of the likelihood function
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4.12 Recurrent neural network (RNN) modeling description

We used PsychRNN (Ehrlich et al., 2021), a Python package, to build RNNs to model

dynamics observed from our PMd data. Three training-optimized RNNs that differed

in gain signal performed a computerized red-green checkerboard discrimination task.

The PsychRNN package is comprehensive in that it allows the experimenter to build

the task as well as to build and train the RNN.

The three RNNs contain 100 hidden layer, recurrently- and fully-connected units

with the activity of the network discretized in 10 ms time steps. The hidden layer

weights were randomly initialized from a Gaussian distribution. The models were

trained with Adam optimization (similar to stochastic gradient descent) using mean

square error as the cost function. The gradient of the loss function was found us-

ing backpropagation. Networks were trained for 50,000 trials and results from the

networks were derived from testing of 10,000 trials. The equations for the recurrent

state (xt), output (yt), and firing rate (rt) of the models are shown below:

Recurrent State (xt):

xt = (1− α)xt−1 + α(Wrecrt−1 +Winut + brec + σ(0, 1)
√

2αN2
rec (4.21)

Output Vector (yt):

yt = sigmoid(Woutrt + bout) (4.22)

Rectified linear unit (ReLU) Firing Rate (rt):

rt = relu(xt) (4.23)

rt = relu(g0 + xt) (4.24)

rt = relu(g0 ∗ xt) (4.25)
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ut - input

α - scaled identity matrix, recurrent synaptic weight initialization

Wrec - recurrent synaptic weight matrix

Win - input synaptic weight matrix

brec - constant bias into recurrent units

bout - constant bias into output units

Wout - output synaptic weight matrix

g0 - variable gain term

σ(0, 1) - constant to scale recurrent unit noise; 0 mean & standard deviation of 1

Nrec - recurrent neural noise

4.13 Kinematic analysis of neural trajectories (KiNeT)

KiNeT (Remington et al., 2018) was used in order to characterize how state space

trajectories evolve over time in terms of relative speed and position as compared

to a reference (ref.) trajectory. The analysis was performed on the dynamics from

the PCA on unit averaged firing rates conditioned on choice and RT. This allowed

the determination of whether certain RT states were associated with faster or slower

dynamics. What follows is a brief description of the KiNeT algorithm and equations

used to calculate speed and position. For a more detailed description of the KiNeT

methodology please refer to Remington and colleagues, 2018.

First we chose the first 10 PCs (∼90% of variance) as our Euclidean coordinate

system. Next we chose the trajectory associated with the middle RT bin (cyan,

Fig 4C) as our ‘reference’ trajectory (Ωref ). To find speed (ti - time in relation

to a reference, ti < 0 faster, ti > 0 slower) of trajectories we found the minimum

Euclidean distance (e.g. argmin|| ||) for all points on all non-reference trajectories

from the corresponding points on the reference trajectory. Time (ti) was used to find
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the corresponding positions (si) on the non-reference trajectories and the normalized

difference between the reference trajectory position and non-reference trajectory was

used to find the distance (Di). Equations and definitions of variables are detailed

below.

Non-ref. time in relation to ref. time (i.e. speed) (ti):

ti[j] = argminτ ||Ωi(τ)− sref [j]|| (4.26)

Position of non-ref. trajectory in relation to ref. trajectory (si):

si[j] = Ωi(ti[j]) (4.27)

Distance of non-ref. trajectory from ref. trajectory (Di):

Di[j] = ||sref [j]− si[j]|| (4.28)

i - non-ref. trajectories

j - location on trajectory

Ωi - non-ref. trajectory

τ - time associated with position j on ref. trajectory

Ωi(τ) - position of non-ref. trajectory at corresponding time on ref. trajectory

sref - position of ref. trajectory at point j

argmin - where function achieves its minimum at point j

4.14 Description of Latent Factors Analysis of Dynamical

Systems (LFADS)

Briefly, LFADS is a generative model which assumes that neuronal spiking activ-

ity is generated from an underlying dynamical system (Pandarinath et al., 2018).
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This dynamical system is assumed to be relatively low-dimensional (i.e. considerably

smaller than the number of neurons involved) and latent factors can be extracted

and exploited to recreate spiking activity on single trials. This method uses a trained

autoencoder to generate ‘initial conditions’ based on a trial’s neurons’ spike counts.

This ‘latent code’ serves as the initial condition to the generator RNN. From the

latent code the generator infers the latent factors of all the neurons in that trial.

Please refer to Pandarinath and colleagues, 2018 for a full description of the LFADS

method.

Here LFADS was used for a single session which recorded from 23 neurons. Our

model consisted of 8 factors to recreate spiking activity of single trials. The first 3

factors were visualized in Fig 5 A & E.
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