Neural population dynamics in dorsal premotor cortex underlying a reach decision

Pierre O Boucher^a, Tian Wang^a, Laura Carceroni^j, Gary Kane^j, Krishna V Shenoy^{b,c,d,e,f,g,h}, Chandramouli Chandrasekaran^{a,i,j,k}

^aDepartment of Biomedical Engineering, Boston University, Boston, 02115, MA, USA ^bDepartment of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA ^cDepartment of Neurobiology, Stanford University, Stanford, 94305, CA, USA ^dHoward Hughes Medical Institute, HHMI, Chevy Chase, 20815-6789, MD, USA ^eDepartment of Bioengineering, Stanford University, Stanford, 94305, CA, USA ^fStanford Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA ^gBio-X Program, Stanford University, Stanford, 94305, CA, USA ^hDepartment of Neuroscience, Boston University, Boston, 02115, MA, USA ^jDepartment of Psychological and Brain Sciences, Boston University, Boston, 02118, MA, USA

Abstract

We investigated if a dynamical systems approach could help understand the link between decision-related neural activity and decision-making behavior, a fundamentally unresolved problem. The dynamical systems approach posits that neural dynamics can be parameterized by a state equation that has different initial conditions and evolves in time by combining at each time step, recurrent dynamics and inputs. For decisions, the two key predictions of the dynamical systems approach are that 1) initial conditions substantially predict subsequent dynamics and behavior and 2) inputs should combine with initial conditions to lead to different choice-related dynamics. We tested these predictions by investigating neural population dynamics in the dorsal premotor cortex (PMd) of monkeys performing a red-green reaction time (RT) checkerboard discrimination task where we varied the sensory evidence (i.e., the inputs). Prestimulus neural state, a proxy for the initial condition, predicted poststimulus neural trajectories and showed organized covariation with RT. Furthermore, faster RTs were associated with faster pre- and poststimulus dynamics as compared to slower RTs, with these effects observed within a stimulus difficulty. Poststimulus dynamics depended on both the sensory evidence and initial condition, with easier stimuli and "fast" initial conditions leading to the fastest choice-related dynamics whereas harder stimuli and "slow" initial conditions led to the slowest dynamics. Finally, changes in initial condition were related to the outcome of the previous trial, with slower pre- and poststimulus population dynamics and RTs on trials following an error as compared to trials following a correct response. Together these results suggest that decision-related activity in PMd is well described by a dynamical system where inputs combine with initial conditions that covary with eventual RT and previous outcome, to induce decision-related dynamics.

Keywords: Dynamical systems, Decision-making, Dorsal Premotor Cortex, Initial Condition Hypothesis

1 1. Introduction

There are 10 minutes to make it to the airport but the GPS says you're still 12 minutes away. Seeing a yellow light in the distance you quickly floor it. You get to the intersection only to realize you have run a red light. The sight of the lights result in patterns of neural activity that respectively lead you to respond quickly to your environment (i.e., speed up when you see the yellow) and process feedback (i.e., slow down after running the red). This process of choosing, performing, and altering actions in response to sensory cues and context is termed perceptual decision-making (Cisek, 2012; Kiani et al., 2013; Brody and Hanks, 2016; Gold and Shadlen, 2007; Brunton et al., 2013).

Research in invertebrates (Briggman et al., 2005; Kato et al., 2015), rodents (Hanks et al., 2015; Guo 9 et al., 2014), monkeys (Roitman and Shadlen, 2002; Churchland et al., 2008), and humans (Pereira et al., 10 2021; Kelly and O'Connell, 2013) has attempted to understand the neural basis for decision-making. 11 Barring few exceptions (Okazawa et al., 2021; Mante et al., 2013; Thura et al., 2020), emphasis has 12 been placed on understanding and characterizing single neuron responses in decision-related brain regions 13 (Roitman and Shadlen, 2002; Churchland et al., 2008; Thura and Cisek, 2014; Chandrasekaran et al., 14 2017). However, how these processes manifest in neural population dynamics to mediate decision-making 15 behavior, especially in reaction time (RT) tasks, is largely unclear. In this study, we address this gap by 16 investigating if a "dynamical systems" approach, originally posited in motor planning studies, can provide 17 a mechanistic understanding of decision-related dynamics and behavior (Churchland et al., 2006; Afshar 18

¹⁹ et al., 2011; Shenoy et al., 2013).

The dynamical systems approach (Vyas et al., 2020a; Shenoy et al., 2013; Remington et al., 2018a) posits that neural population activity, X is governed by a state equation of the following form:

$$\frac{dX}{dt} = F(X) + U \tag{1}$$

²² Where F is a function that represents the recurrent dynamics (i.e., synaptic input) in the region of ²³ interest, U is the input to the system from neurons outside the region of interest, and X_0 is the initial ²⁴ condition for these dynamics. The function F is usually considered to be fixed for a given brain area ²⁵ in a task, and U is variable depending on various task contingencies (e.g., sensory evidence). In this ²⁶ framework, dynamics for every trial are dependent on both the initial conditions and inputs and this ²⁷ ultimately leads to distinct behavior on every trial.

The attractiveness of the dynamical systems approach is that it provides a powerful and simplified 28 mechanistic basis for understanding the link between time-varying, heterogeneous activity of neural 29 populations and behavior (Afshar et al., 2011; Kaufman et al., 2014; Elsayed et al., 2016). For example, 30 in studies of motor planning, the position and velocity of the neural population dynamics relative to the 31 mean trajectory at the time of the 'go' cue (i.e., initial condition or X_0) explained considerable variability 32 in RTs (Afshar et al. 2011, see Fig. 1A). Similarly, in studies of timing, the initial condition encoded 33 the perceived time interval and predicted the speed of subsequent neural dynamics and the reproduced 34 time interval (Remington et al. 2018b, see Fig. 1B). In the same study, an input depending on a task 35 contingency ("gain") also altered the speed of dynamics (Fig. 1B). 36

Our goal here was to expand on these findings from motor planning and timing studies and investigate if a dynamical systems approach with varying initial conditions and inputs could provide a mechanistic understanding of neural population activity underlying decisions. Support for varying initial conditions in decisions comes from speed-accuracy tradeoff (SAT) and post-error adjustment experiments. In these studies, prestimulus neural activity is different for fast vs. slow blocks (Murphy et al., 2016; Bogacz

et al., 2010) and depends on the outcome of the previous trial, respectively (Purcell and Kiani, 2016; 42 Thura et al., 2017), see Fig. 1C/D. Similarly, a large body of research emphasizes that the rate at 43 which choice-selective activity emerges is dependent on the strength of the sensory evidence (Roitman 44 and Shadlen, 2002; Chandrasekaran et al., 2017; Hanks et al., 2015; Coallier et al., 2015, e.g., auditory 45 pulses, random dot motion, static red-green checkerboards, etc.). Thus, based on this prior work, we 46 hypothesize that a dynamical system for decision-making should have the following properties: 1) the 47 initial condition, as indexed by the prestimulus neural population state, predicts poststimulus decision-48 related neural dynamics and behavior and 2) the speed of choice-selective dynamics after stimulus onset 49 should depend on the strength of the sensory evidence and the initial conditions. The initial neural state 50 will either predict both RT- and choice- (Fig. 1E, $X_0 \sim RT$, choice) or only RT-related poststimulus 51 dynamics and behavior (Fig. 1F, $X_0 \sim RT$), with the dynamics in the latter hypothesis dependent upon 52 previous trial outcomes. 53

We tested these predictions by examining firing rates of neurons recorded in dorsal premotor cortex (PMd) 54 of monkeys performing a red-green RT perceptual decision-making task (Chandrasekaran et al., 2017). 55 First, analysis of the state space trajectories suggested that neural population dynamics were ordered 56 pre- and poststimulus as a function of RT. Subsequent KiNeT analysis (Remington et al., 2018b) of the 57 dynamics of these trajectories suggested that faster RTs were associated with faster pre- and poststimulus 58 dynamics as compared to slower RTs and such effects were observed within a stimulus difficulty. Decoding 59 and regression analyses further revealed that prestimulus neural state, that is the *initial condition*, only 60 predicted RT but not the eventual choice consistent with the hypothesis shown in Fig. 1F. The speed of 61 the poststimulus dynamics that led to the eventual choice jointly depended on the initial condition 62 and the sensory evidence, with choice-related signals emerging faster for easier compared to harder 63 trials but also modulated by the initial condition. Initial conditions and choice-related dynamics depended 64 on the outcome of the previous trial with pre- and poststimulus dynamics slower on trials following an 65 error as compared to trials following a correct response. Our results are a significant and important 66 expansion of the observations of Afshar et al. (2011), that the prestimulus position and velocity of the 67 neural trajectories in state space (i.e., initial conditions) are correlated with RT, as we demonstrate 68 that 1) both inputs and initial conditions jointly control dynamics, and 2) that changes in the initial 69 conditions are dependent upon previous outcomes. Together these results suggest that decision-related 70 activity in PMd is captured by a dynamical system composed of initial conditions, that predict RT and 71 are dependent upon previous outcome, and inputs (i.e., sensory evidence) which combine with initial 72 conditions to induce choice-related dynamics. 73

74 (Introduction: 912 words)

75 2. Results

⁷⁶ 2.1. Decision-related behavior is dependent on sensory evidence and internal state

We trained two macaque monkeys (O and T) to discriminate the dominant color of a central, static checkerboard 77 composed of red and green squares (Fig. 2A). Fig. 2B depicts the trial timeline. The trial began when the 78 monkey held the center target and fixated on the fixation cross. After a short randomized holding time (300-485 79 ms), a red and a green target appeared on either side of the central hold (target configurations were randomized). 80 After an additional randomized target viewing time drawn from a censored exponential distribution (400-1000 81 ms), the checkerboard appeared. The monkey's task was to reach to, and touch the target corresponding to 82 the dominant color of the checkerboard. While animals were performing the task, we measured the arm and eye 83 movements of the monkeys. We identified RTs as the first time when hand speed exceeded 10% of maximum 84 speed during a reach. If the monkey correctly performed a trial, he was rewarded with a drop of juice and a short 85 inter-trial interval (ITI, 300 to 600 ms across sessions) whereas if he made an error it led to a longer timeout ITI 86

Figure 1: Initial conditions and inputs predict subsequent neural dynamics and behavior (A) The initial condition hypothesis from delayed reach experiments (Afshar et al., 2011) posits that the position and velocity of a neural state at the time of the 'go' cue ("initial condition") negatively correlates with RT. That is for faster RT trials, neural state at the time of the go cue is 1) further along ("position") relative to the mean neural trajectory and thus closer to the movement initiation state and 2) has a greater rate of change in the direction of the mean neural trajectory ("velocity"). (B) The neural population state at the end of a perceived time interval and a gain modifier actuates the initial conditions (Set, circles) determining the speed (arrows) of subsequent dynamics and therefore when an action is produced (Go, X's) (Remington et al., 2018b). (C & D) Prestimulus neural activity differs for speed and accuracy contingencies for speedaccuracy tradeoff tasks (Heitz and Schall, 2012) or after correct and error trials (Thura et al., 2017). (E) Biased initial conditions predict both RT and choice ($X_0 \sim RT, choice$) and combine with sensory evidence to lead to decisions. Initial neural states vary trial-to-trial, and are closer to the movement onset state for one choice (here left). Trials with neural states closer to a left movement onset at stimulus onset will have faster RTs and RTs will be slower for right choices. Trial outcomes have no effect on initial conditions in this model as initial conditions largely reflect a reach bias. (F) Initial conditions solely predict RT ($X_0 \sim RT$). The position of the initial condition before checkerboard onset is closer to a movement initiation state and the velocity of the dynamics are faster for fast RTs compared to slow RTs. Previous outcomes shift these initial conditions such that the dynamics are either faster or slower, leading to faster or slower RTs respectively. Overall dynamics depend on both the initial conditions and the sensory evidence. Current population state at stimulus onset/go cue (dots within an ellipse) evolves along trajectories of varying speed (color bars in A & E; apply to A, B, E and F) as set by the initial conditions (A) and also inputs after stimulus onset (E & F). In E and F light/dark opacity of the arrowhead indicates weak/strong stimulus input.

Figure 2: Monkeys can discriminate red-green checkerboards and demonstrate rich variability in RTs between and within stimulus coherences (\mathbf{A}) An illustration of the setup for the behavioral task. We loosely restrained the arm the monkey was not using with a plastic tube and cloth sling. A reflective infrared bead was taped on the middle digit of the active hand to be tracked in 3D space. We used the measured hand position to mimic a touch screen and to provide an estimate of instantaneous arm position; eye position was tracked using an infrared reflective mirror placed in front of the monkey's nose. (B) Timeline of the discrimination task. (C) Examples of different stimuli used in the experiment parameterized by the color coherence of the checkerboard cue. Positive values of signed coherence (SC) denote more red (R) than green (G) squares and vice versa. (D) Psychometric curves, percent responded red, and (E) RTs (correct and incorrect trials) as a function of the percent SC of the checkerboard cue, over sessions of the two monkeys (T: 75 sessions; O: 66 sessions). Dark orange markers show measured data points along with $2 \times SEM$ estimated over sessions (error bars lie within the marker for many data points). The black line segments are drawn in between these measured data points to guide the eye. Discrimination thresholds measured as the color coherence level at which the monkey made 81.6% correct choices are also indicated. Thresholds were estimated using a fit based on the cumulative Weibull distribution function. (F) Box-and-whisker plot of RT as a function of unsigned checkerboard coherence with outliers plotted as blue circles. Note large RT variability within and across coherences. (G) The recording location, caudal PMd (PMdc), indicated on a macaque brain, adapted from Ghazanfar and Santos (2004). Single and multi- units in PMdc were primarily recorded by a 16 electrode (150-µm interelectrode spacing) U-probe (Plexon, Inc., Dallas, TX, United States); example recording depicted.

(ranging from ~ 1500 ms to ~ 3500 ms). Using timeouts for errors encouraged animals to prioritize accuracy over speed.

We used 14 levels of sensory evidence referred to as signed color coherence ('SC', Fig. 2C) as it's *dependent* on the actual dominant color of the checkerboard. Unsigned coherence ('C', Fig. 2C), which refers to the strength of stimuli, is *independent* of the actual dominant color of the checkerboard. Thus, there are 7 levels of C.

The behavioral performance of the monkeys depended on the signed coherence. In general, across all sessions, monkeys made more errors when discriminating stimuli with near equal combinations of red and green squares (Fig. 2D). We fit the proportion correct as a function of unsigned coherence using a Weibull distribution function to estimate slopes and psychometric thresholds (average R^2 ; T: 0.99 (over 75 sessions); O: 0.98 (over 66 sessions); Threshold - Mean \pm SD: T: 10.89 \pm 1.37%, O: 16.78 \pm 2.05% slope (β , Mean \pm SD over sessions, T: 1.26 \pm 0.18, O: 1.10 \pm 0.14).

As expected, monkeys were generally slower for more ambiguous checkerboards (Fig. 2E). However, per monkey regressions using unsigned coherence $(log_{10}(C))$ to predict RTs only explained $\sim 12.4\%$ and $\sim 1.5\%$ of RT variability, for monkeys T and O respectively. These results suggest that while there is RT variability induced by differences in the stimulus evidence, there is also an internal source of RT variability. Indeed, as the box plots in Fig. 2F show, a key feature of the monkeys' behavior is that RTs are quite variable within a coherence, even for the easiest ones. In the subsequent sections, we investigated if a dynamical system parameterized by initial conditions and inputs could explain RT variability and choice behavior.

¹⁰⁵ 2.2. Single unit prestimulus firing rates covary with RT and poststimulus activity is input dependent

Our database for understanding the neural population dynamics underlying decision-making consists of 996 units (546 units in T and 450 units in O, including both single neurons and multi-units, 801 single neurons) recorded from PMd of the two monkeys over 141 sessions. We chose units as they were well isolated from other units/separated from noise and modulated activity in at least one task epoch. A unit was categorized as a single neuron by a combination of spike sorting and if inter-spike-interval violations were minimal ($\leq 1.5\%$ of inter-spike-intervals were ≤ 1.5 ms; median across single neurons: 0.28%).

Fig. 3 shows the smoothed (30 ms Gaussian) firing rates of five example units recorded in PMd aligned to 112 checkerboard onset and organized either by coherence and choice, plotted until the median RT (Fig. 3A), or 113 organized by RT and choice, plotted until the midpoint of the RT bin (Fig. 3B). Many units showed classical 114 ramp-like firing rates (Shadlen and Newsome 1996, 2001; Roitman and Shadlen 2002; Hanks et al. 2014; Latimer 115 et al. 2015, see Fig. 3, top three rows). However, many neurons demonstrated complex, time-varying patterns of 116 activity that included increases and decreases in firing rate that covaried with stimulus difficulty, choice and RT 117 (Fig. 3, bottom 2 rows) (Meister et al., 2013; Mante et al., 2013; Jun et al., 2010). Additionally, each of the, 118 albeit curated, neurons in Fig. 3B demonstrated prestimulus firing rate covariation with RT implying variable 119 initial conditions that ultimately factor into RTs. 120

Thus, these example units provide preliminary support for our hypothesis that variable initial conditions, combined with sensory evidence as input can explain decision-related dynamics and behavior. In the next sections, we used dimensionality reduction, decoding, and regression analyses to further interrogate how RT and choice were represented in the shared, time-varying, and heterogeneous activity of these neurons.

¹²⁵ 2.3. Principal component analysis reveals prestimulus population state covariation with RT

The single unit examples shown in Fig. 3 support the proposition that the initial conditions, or population neural dynamics just before stimulus onset, should strongly account for RT variability and this effect should be observed within a stimulus difficulty. To visualize if this was the case, we performed a principal component analysis (PCA) on trial-averaged firing rate activity (again smoothed with a 30 ms Gaussian) windowed about checkerboard onset, organized by overlapping RT bins, 11 levels representing a spectrum from faster to slower RTs (300-400 ms, 325-425 ms, ..., to 600-1000 ms), and both reach directions (Fig. 4A, B). For this analysis, we pooled all

Figure 3: Firing rates of a heterogeneous population of PMd neurons are modulated by the input (i.e., strength of the sensory evidence) and the initial conditions (prestimulus firing rate) covaries with RT before stimulus onset. (A, B) Firing rate activity across (A) 7 levels of color coherence and (B) 11 RT bins and both action choices (right - dashed, left - solid) of 5 example units in PMd from monkeys T and O aligned to stimulus onset (Cue/vertical dashed black line). Firing rates are plotted until the median RT of each color coherence and until the midpoint of each RT bin (notice slightly different lengths of lines). Color bars indicate the level of difficulty for the coherence (violet - mostly one color, orange - nearly even split of red and green squares) or RT speed. Gray shading is SEM. In **A**, the firing rates separate faster for easier choices compared to harder choices, and in **B**, the same neurons show prestimulus modulation as a function of RT ($X_0 \sim RT$).

trials (including both correct and wrong trials) across all the different stimulus coherences and sorted by RT andchoice before averaging.

To identify the number of relevant dimensions for describing this data, we used a principled approach developed in 134 Machens et al. (2010) (see 4.10 for details). Firing rates on every trial in PMd during this task can be thought of 135 as consisting of a combination of signal (i.e., various task related variables) and noise contributions from sources 136 outside the task such as spiking noise, for example. Trial averaging reduces this noise but nevertheless when PCA 137 is performed it returns a principal component (PC) space that captures variance in firing rates due to the signal 138 and variance due to residual noise ("signal+noise PCA"). Ideally, we only want to assess the contributions of the 139 signal to the PCA, but this is not possible for trial-averaged or non-simultaneously recorded data. To circumvent 140 this issue and determine the number of signal associated dimensions, the method developed in Machens et al. 141 (2010) estimates the noise contributions by performing a PCA on the difference between single trial estimates of 142 firing rates, to obtain a "noise" PCA. Components from the signal+noise PCA and the noise PCA were compared 143 such that only signal+noise dimensions that were significantly greater than the noise dimensions (identified as 144 the first point where the signal+noise variance was significantly lower than the noise variance by at least 3 \times 145 SEM) were included in further analyses. The assumption here is that the dimensions above the noise are largely 146 dominated by the signal and the dimensions below the noise are largely noise dimensions. This analysis yielded 147 six PCs that explained > 90% of the variance in firing rates (Fig. S1). 148

Fig. 4A plots the first four PCs obtained from this PCA. What is apparent in Fig. 4A is that the prestimulus 149 state strongly covaries with RT but not with choice. In particular, barring component 2, which seems to be 150 most strongly associated with choice, PCs 1, 3, and 4 showed covariation between the prestimulus state and 151 RT (Fig. 4A, highlighted with light blue rectangles) — consistent with the rich covariation between RT and 152 prestimulus firing rates in the single neuron examples shown in Fig. 3B. Visualizing PCs 1, 2, and 4 in a state 153 space plot further supported this observation (Fig. 4B). In this state space plot, both position and the velocity 154 of the prestimulus state appear to covary with RT. For instance, prestimulus trajectories for the fastest RTs are 155 1) spatially separated, and 2) appear to have covered more distance along the paths for movement initiation by 156 the time of checkerboard onset than the prestimulus trajectories for the slowest RTs (small squares which denote 157 20 ms time steps are more spread out for faster versus slower trajectories, Fig. 4B). In contrast, only a modest 158 separation by choice occurs before stimulus onset. 159

Note, such covariation between prestimulus neural state and RT was not an artifact of pooling across all the different stimulus difficulties and was observed even within a level of stimulus coherence (note similarities between Fig. 4B & Fig. 6C). We discuss this further in section 2.6 where we analyzed the joint effects of inputs and initial conditions.

¹⁶⁴ Collectively, the visualization using PCA firmly suggests that prestimulus state predicts poststimulus dynamics ¹⁶⁵ and covaries with RT but not the eventual choice. In subsequent sections, we used various analyses to further ¹⁶⁶ understand if these data could be understood through the lens of a dynamical system that has varying initial ¹⁶⁷ conditions, and inputs. We first examined how initial conditions control the dynamics of decision-making, and ¹⁶⁸ then how they combined with inputs to drive decisions.

¹⁶⁹ 2.4. Position and 'velocity' of initial condition correlate with poststimulus dynamics and RT

The dynamical systems perspective predicts that poststimulus dynamics and behavior depend upon the position 170 and velocity of prestimulus neural trajectories in state space (i.e., initial conditions) (Shenoy et al., 2013; Vyas 171 et al., 2020a). Position is the instantaneous location in a high-dimensional state space of neural activity (i.e., 172 firing rate of neurons) and velocity is a directional measure of how fast these positions are changing over time 173 (i.e., directional rate of change from one neural state to the next). We used the Kinematic analysis of Neural 174 Trajectories (KiNeT) approach recently developed by Remington et al. (2018b) to test this prediction. KiNeT 175 measures the spatial ordering of trajectories and how each trajectory evolves in time, all with respect to a reference 176 trajectory. Please refer to Fig. S4 for a visualization of how KiNeT analyses are performed and see 4.11 for a 177

¹⁷⁸ full description of KiNeT calculations.

Figure 4: Prestimulus population firing rates covary with RT (A) The first four PCs $(PC_{1,2,3,4})$ of trial averaged firing rates organized across 11 RT bins (violet - fastest bin to orange - slowest bin, both reach directions (right - dashed lines, left - solid lines), and aligned to checkerboard onset. Percent variance explained by each PC is indicated at the top of each plot. (B) State space trajectories of the 1st, 2nd and 4th PCs ($PC_{1,2,4}$) aligned to checkerboard onset (red dots). Prestimulus neural activity robustly separates as a function of RT bin. Diamonds and squares, color matched to their respective trajectories, indicate 250 ms post-checkerboard onset and 20 ms time steps respectively. Note that faster RT trajectories appear to move faster in the prestimulus period than slower RTs ("fast/slow prestim", also see G). (C) "KiNeT distance" analysis showing that trajectories are consistently spatially organized before and after stimulus onset and correlated with RT. (D) Angle between subspace vector at each timepoint and subspace vector at the first timepoint (- 400ms). The angle between subspace vectors is largely consistent but the space rotates as choice signals emerge (green highlight box). (E) Average relative angle between adjacent trajectories for each timepoint. The angles between adjacent trajectories were largely less than 90° for the prestimulus period but approach orthogonality as choice signals emerge poststimulus. (F) "KiNeT Time to reference" (t_{Ref} , relative time at which a trajectory reaches the closest point in Euclidean space to the reference trajectory) analysis shows that trajectories for faster RTs reach similar points on the reference trajectory (cyan, middle trajectory) earlier than trajectories for slower RTs. This result suggests that the dynamics for faster RTs are closer to a movement initiation state than slower RTs. (G) Average scalar speed for the prestimulus period (-400 to 0 ms epoch) as a function of RT bin. Firing rates across the population change faster (both increases and decreases) for faster RTs and slower for slower RTs. Error bars are bootstrap SEM. (H) Choice selectivity signal measured as the Euclidean distance in the first six dimensions between the two reach directions for each RT bin aligned to checkerboard onset. The rate at which Choice selectivity (CS) emerges is faster for faster RTs compared to slower RTs (green highlight box). In C & F the x-axis is labelled "Time (ms)", this should be understood as time on the reference trajectory. Abbreviations: Checkerboard onset - Cue & vertical black dashed line, a. u. - Arbitrary units.

First, we used KiNeT to assess if position of the initial conditions was related to RT. If the position of the initial 179 condition covaries with RT then we would expect a lawful ordering of neural trajectories organized by RT bin, 180 otherwise they would lie one on top of the other indicating a lack of spatial organization. Thus, we examined the 181 spatial ordering of six-dimensional neural trajectories grouped by RT bins for each reach direction. We estimated 182 the signed minimum Euclidean distance at each point for the trajectory relative to a reference trajectory (the 183 middle RT bin, cyan, for that reach direction, Fig. 4C). Trajectories were 1) organized by RT with trajectories 184 for faster and slower RT bins on opposite sides of the the reference trajectory, and 2) the relative ordering of 185 the Euclidean distance with respect to the reference trajectory was also lawfully related to RT (Fig. 4C) as 186 measured by a correlation between RT and the signed Euclidean distance at -100 ms before checkerboard onset 187 $(r = -0.85, p = 9.45 \times 10^{-4})$. These data are consistent with the prediction that the position of the initial 188 condition correlates with RT. 189

Second, we examined if the relative ordering of trajectories by RT in the prestimulus period predicted the ordering 190 of poststimulus trajectories by measuring the "subspace similarity" angle, and average "alignment". Subspace 191 similarity is a measure of how six-dimensional neural trajectories rotate as a subspace in time in relation to the 192 first timepoint. Alignment measures the degree to which neural trajectories diverge from one another in state 193 space by estimating the average angle of the normalized vectors between pairwise adjacent trajectories at each 194 timepoint. The null hypothesis is that prestimulus dynamics do not have consistent spatial ordering and adjacent 195 trajectories are rapidly changing which would lead to changes in the subspace angle between adjacent time 196 points and large changes in the alignment of adjacent trajectories. Alternatively, if prestimulus dynamics predict 197 ordering of poststimulus dynamics, the average subspace angle will be largely constant from prestimulus to the 198 poststimulus period until choice and movement initiation signals begin to emerge for the fastest RTs (~ 300 ms). 199 The subspace angle (Fig. 4D) between the first point in the prestimulus period and subsequent timepoints was 200 $< 90^{\circ}$ before and after checkerboard onset and only increased when movement initiation began to happen for 201 the fastest RTs (p < 0.02, bootstrap). Similarly, the angle between adjacent trajectories (Fig. 4E) was largely 202 similar throughout the trial for each direction and only begun to change after choice and movement initiation 203 signals began to emerge, suggesting that the ordering of trajectories by RT was largely preserved well into the 204 poststimulus period. These results imply that the initial condition was strongly predictive of the poststimulus 205 state and eventual RT (p < 0.02, bootstrap), again consistent with the predictions of the dynamical systems 206 approach. 207

Third, we examined if the velocity of the peristimulus dynamics was faster for faster RTs compared to slower RTs. 208 For this purpose, we used KiNeT to find the timepoint at which the position of a trajectory is closest (minimum 209 Euclidean distance) to the reference trajectory, which we call *Time to reference* (t_{ref} , Fig. 4F). Trajectories slower 210 than the reference trajectory will reach the minimum Euclidean distance relative to the reference trajectory later 211 in time (i.e., longer t_{ref}), whereas trajectories faster than the reference trajectory will reach these positions 212 earlier (i.e., shorter t_{ref}). Given that trajectories are compared relative to a reference trajectory, t_{ref} can thus 213 be considered an indirect estimate of the velocity of the trajectory at each timepoint. Note, t_{ref} was referred 214 to as speed in Remington et al. (2018b). Although a trajectory could reach the closest point to the reference 215 trajectory later due to a slower speed, it could also be due to unrelated factors such as starting in a position in 216 state space further from movement onset or by taking a more meandering path through state space. All of these 217 effects are consistent with a longer t_{ref} and a slower velocity, but not necessarily a slower speed. 218

KiNeT revealed that faster RTs involved faster pre- and poststimulus dynamics whereas slower RTs involved 219 slower dynamics as compared to the reference trajectory (trajectory associated with the middle RT bin, cyan) 220 (Fig. 4F). There was also a positive correlation between RT bin and t_{ref} as measured by KiNeT at -100 ms 221 before checkerboard onset (r = 0.82, p = 1.96×10^{-3}). Additionally, we found that the overall scalar speed 222 of trajectories in the prestimulus state for the first six dimensions (measured as a change in Euclidean distance 223 over time and averaged over the 400 ms prestimulus period) covaried lawfully with RT (Fig. 4G). Thus, the 224 'velocity' of the initial condition, relative to the reference trajectory, is faster for faster RTs compared to slower 225 RTs, coherent with the prediction of the initial condition hypothesis (Afshar et al., 2011). 226

Collectively, these results firmly establish that the initial condition in PMd correlates with RT and that the geometry and dynamics of these decision-related trajectories strongly depend on the position and 'velocity' of the initial condition consistent with the hypothesis shown in Fig. 1F (Afshar et al., 2011).

230 2.5. Initial conditions do not predict eventual choice

The previous analyses demonstrated that initial conditions strongly covaried with RT consistent with the hypoth-231 esis shown in Fig. 1F. Does the initial condition also predict choice? To investigate this issue, we first examined 232 the covariation between prestimulus and poststimulus state with choice by measuring a choice selectivity signal 233 identified as the Euclidean distance between the left and right choices in the first six dimensions at each timepoint. 234 The choice selectivity signal was largely flat during the prestimulus period and increased only after stimulus onset 235 (Fig. 4H). We also found that slower RT trials had delayed and slower increases in the choice selectivity signal 236 compared to the faster RTs, a result consistent with the slower overall dynamics for slower compared to faster 237 RTs (Fig. 4H). Consistent with this observation, we found a negative correlation between the average choice 238 selectivity signal in the 125 to 375 ms period after checkerboard onset and RT (r =-0.87, p = 4.22×10^{-4}). 239

To discriminate between the hypotheses shown in Fig. 1E, F, we interrogated the initial condition and subsequent 240 poststimulus dynamics using a combination of single-trial analysis, decoding, and regression. We first used 241 the Latent Factor Analysis of Dynamical Systems (LFADS) approach to estimate single-trial dynamics in a 242 orthogonalized latent space for one of the reach choices and the easiest coherence for a single session (Pandarinath 243 et al., 2018, 23 units). This analysis revealed that: 1) initial state for a majority of the slow RT trials are separated 244 from the fast RT trials, 2) Initial conditions associated with a minority of the slow trials are mixed in with fast 245 initial conditions, and 3) slower RT trajectories also appear to have more curved trajectories (Fig. 5A). All of 246 these are consistent with the results of the trial-averaged PCA reported in Fig. 4. Finally, initial neural states 247 related to left and right reach directions are mixed prior to stimulus onset (Fig. 5B) — again consistent with the 248 results of the trial-averaged PCA. These single-trial dynamics suggest that prestimulus spiking activity covaries 249 with RTs but not choice, even on single trials. 250

Regression and decoding analyses of raw firing rates supported insights from the LFADS visualization (Fig. 5A) 251 that prestimulus spiking activity would be predictive of RT. A linear regression with prestimulus spiking activity 252 and coherence as predictors explained $\sim 25\%$ of the variance in RT from the same session used for LFADS (Fig. 253 5C), significantly higher than the 99th percentile of variance explained by a similar regression using trial-shuffled 254 spiking activity instead. Identical linear regressions were performed for each of 51 sessions and R^2 values were 255 averaged across sessions. Across these sessions (Fig. 5E), prestimulus spiking activity and coherence again 256 explained significantly more RT variance than a shuffle control of spiking activity for 47 out of 51 sessions (Mean 257 \pm SD: 13.50 \pm 8.57%, 4.70 \pm 3.61%, one-tailed binomial test, p = 1.11×10^{-10} , Fig. S2A). 258

Note, prediction of RT by spiking activity was not just an artifact of RT covarying with the coherence. A linear regression with binned spiking activity and coherence as predictors explained significantly more variance in RTs in all prestimulus bins than a linear regression of RTs with solely coherence as the predictor (only the last prestimulus bin is reported here: Mean \pm SD: 13.66 \pm 8.9%, 6.32 \pm 5.97%; Wilcoxon rank sum comparing median R^2 , p $= 2.97 \times 10^{-9}$, Fig. 5E). Therefore, nearly equal amounts of RT variance are explained by prestimulus neural spiking activity ($\sim 7\%$) and the coherence of the eventual stimulus (6.32%, Fig. 5E).

In contrast, a logistic regression using binned spiking activity to predict choice, failed to predict choice, during 265 the prestimulus period, more than the 99th percentile of accuracy from a logistic regression using trial-shuffled 266 spiking activity (Fig. 5D). Similar logistic regressions were built for each session and accuracy was averaged 267 across bins and sessions. The average prestimulus accuracy in predicting choice (Fig. 5F) was no better than the 268 99th percentile of averaged prestimulus accuracy from similar logistic regressions built on trial-shuffled spiking 269 activity (Mean \pm SD: 50.08 \pm 0.51%, 50.00 \pm 0.03%, only one session was larger than the shuffled data out of 270 51 comparisons, one-tailed binomial test, p > 0.999, Fig. S2B). Prestimulus spiking activity was no better than 271 chance at predicting eventual choice even when trials were grouped by RT bins (Fig. S2C). These results are a 272

Figure 5: Single-trial analysis, linear regression, and decoders reveal that initial conditions predict RT but not choice (A/B) LFADS (Pandarinath et al., 2018) trajectories in the space of the first three orthogonalized factors ($X_{1,2,3}$), obtained via PCA on LFADS latents, plotted for (A) the fastest 30% of trials (blue) and the slowest 30% of trials (red) for one reach and (B) for left (purple) and right (green) reaches, all for the easiest coherence from a single session (23 units). Each trajectory is plotted from 200 ms before checkerboard onset (dots) to movement onset (diamonds). (C/D) Variance explained (R^2)/decoding accuracy from linear/logistic regressions of binned spiking activity and coherence (20 ms) to predict trial-matched RTs/eventual choice from all 23 units in the LFADS session shown in A/B. The magenta and light green dotted lines are the 99th and 1st percentiles of R^2 /accuracy values calculated from averaged models of trial-shuffled (shuffled 500 times) spiking activity and RTs/choice. (E/F) R^2 /accuracy values, calculated as in C/D, averaged across 51 sessions. 6.32% is the average percentage of variance explained across the 51 sessions for both monkeys by regressions using stimulus coherence to predict RTs. Orange shaded area is *SEM*. 50% accuracy in D/F is denoted by the black dotted line.

key line of evidence in support of the hypothesis outlined in Fig. 1F that initial conditions covary with RT but not choice.

275 2.6. Inputs and initial conditions both contribute to the speed of poststimulus decision-related dynamics

Thus far we have shown that the initial conditions predict RT but not choice. Our monkeys clearly demonstrate choice behavior that depends on the sensory evidence, and also are generally slower for harder compared to easier checkerboards. These behavioral results and the dynamical systems approach make two key predictions: 1) sensory evidence (i.e. the input), should modulate the rate at which choice-selectivity emerges after stimulus onset and 2) the overall dynamics of the choice selectivity signal should depend on both sensory evidence and initial conditions.

To test the first prediction, we performed two analyses. First, we performed a PCA on firing rates of PMd neurons organized by stimulus coherence and choice. Fig. 6A shows the state space trajectories for the first three components. In this space, activity separates faster for easier compared to harder coherences. Consistent with this visualization, choice selectivity increases faster for easier compared to harder coherences (Fig. 6B). These results suggest that poststimulus dynamics are at least in part controlled by the sensory input consistent with the predictions of the dynamical systems hypothesis.

To test the second prediction of how sensory evidence and initial conditions jointly impact the speed of post-288 stimulus dynamics, we performed a PCA of PMd firing rates conditioned on RT and choice within a coherence. 289 To obtain these trajectories, we first calculated trial-averaged firing rates for the various RT bins within each 290 coherence. We then projected these firing rates into the first six dimensions of the PC space organized by choice 291 and RTs (Fig. 4A & B). This projection preserved more than 90% of the variance captured by the first six 292 dimensions of the data organized by RT bins and choice within a coherence which ranged from 75 to 80% of the 293 total variance of the data for a given coherence. Consistent with the results in Fig. 4B, the prestimulus state 294 again correlates with RT even within a stimulus difficulty (Fig. 6C). 295

To assess how inputs and initial conditions jointly influenced decision-related dynamics, we again computed the 296 time-varying choice selectivity signal (CS(t)) by computing the high-dimensional distance between left and right 297 trajectories at each timepoint for each of the RT bins and coherences. Fig. 6D shows this choice selectivity signal 298 as a function of RT for the three different coherences shown in Fig. 6C. For the easiest coherence, the choice 299 selectivity signal starts ~ 100 ms after checkerboard onset and it increases faster (i.e., steeper slope) for faster 300 RTs compared to slower RTs (Fig. 6D, top panel, blue highlight box). In contrast, for the hardest coherence, 301 the choice selectivity signal is more delayed for the slower RTs compared to the faster RTs, while a similar slope 302 effect is still observed (i.e., steeper slope for fast RTs as compared to slow RTs) (Fig. 6D, bottom panel). These 303 plots suggest that inputs and initial conditions combine and alter the rate and latency of choice-related dynamics. 304

We quantified these patterns by first measuring the rate at which choice-selectivity emerges. Our metric was the 305 average choice selectivity signal in the 200 ms period from 125 to 325 ms after checkerboard onset as a function 306 of the initial condition and for each of the 7 coherences. We obtained an estimate of the initial condition by using 307 a PCA to project the average six-dimensional location in state space in the -300 ms to -100 ms period before 308 checkerboard onset for each of these conditions on to a one-dimensional axis (see 4.14). As Fig. 6E shows, 309 the rate at which the choice selectivity signal emerges is greater for easier coherences across the board but also 310 weaker or stronger depending on the initial condition. Furthermore, when coherence is fixed, the average rate of 311 the choice selectivity signals depends on the initial condition. A partial correlation analysis found that the rate 312 at which choice selectivity emerges depends on both the initial condition (r = 0.85, p < 0.001) and the sensory 313 evidence (r = -0.38, p < 0.001). These results are key evidence that choice-selective, decision-related dynamics 314 are controlled both by the initial condition and the sensory evidence. 315

We also measured the latency at which choice selectivity emerged and how it depended on initial condition and sensory inputs. To estimate latency, we fit the choice selectivity signal (CS(t)) using a piecewise function as detailed in 4.13. Fig. 6F plots the latency of the choice selectivity signal $(t_{Latency})$ as a function of the sensory

Figure 6: Initial conditions and inputs determine speed of dynamics and ultimately choice and RT behavior (A) State space of the first three PCs ($PC_{1,2,3}$) of a PCA of firing rates of all 996 units aligned to checkerboard onset (red dots) conditioned on stimulus coherence and choice. Clear poststimulus separation as a function of choice and coherence, but no observable prestimulus (-400 ms to 0 ms) separation. Diamonds and squares, color matched to their respective trajectories, indicate 250 ms post-checkerboard onset and 20 ms time steps respectively. (B) Choice selectivity signal measured as the Euclidean distance in the first six dimensions between left and right reaches as a function of stimulus coherence. (C) State space trajectories of the 1st, 2nd and 4th PCs of PCAs conditioned on RT bins and action choice within three stimulus coherences (90%, 31%, & 4%). (D) Choice selectivity signal for each of the three coherences shown in C as a function of RT bin. (E) Plot of the magnitude of the choice selectivity signal (averaged over the time period from 125 to 375 ms after checkerboard onset) as a function of the initial condition within each coherence. As expected easier coherences lead to higher choice selectivity signals regardless of RT, but the rates and the latencies of this signal depend on the initial condition as well as sensory evidence. (F) Latency of the choice selectivity signal as a function of the initial condition and for each stimulus coherence, hour of the harder coherences. For clarity, only four of the seven coherences are shown in E & F.

input and the initial condition. Latencies are slower when the initial condition is in the slow RT state and the sensory input is weak, but faster for strong inputs and when the initial condition is in a fast RT state. Again, a partial correlation analysis found that the latency of choice selectivity depends on both the initial condition (r =-0.60, p < 0.001) and coherence (r = 0.44, p < 0.001).

Collectively, these results strongly support a dynamical system for decision-making where both initial conditions and inputs together shape the speed of decision-related dynamics and behavior, whereas poststimulus dynamics alone control choice.

³²⁶ 2.7. The outcome of the previous trial influences the initial condition

So far we have demonstrated that the initial condition, as estimated by prestimulus population spiking activity, explains RT variability and poststimulus dynamics in a decision-making task. However, why initial conditions fluctuate remains unclear. One potential source of prestimulus neural variation could be post-outcome adjustment, where RTs for trials following an error are typically slower or occasionally faster than RTs in trials following a correct response (Danielmeier and Ullsperger, 2011; Purcell and Kiani, 2016; Dutilh et al., 2012).

We examined if post-outcome adjustment was present in the behavior of our monkeys. We identified all error, 332 correct (EC) sequences and compared them to an equivalent number of correct, correct (CC) sequences. The 333 majority of the data are from sequences of the form "CCEC" (78%), while the remainder of "EC" sequences were 334 compared to other "CC" sequences (22%). Associated RTs were aggregated across both monkeys and sessions. 335 We found that correct trials following an error were significantly slower than correct trials following a correct trial 336 (M \pm SD: 447 \pm 117 ms, 428 \pm 103 ms; Wilcoxon rank sum comparing median RTs, p = 8.44×10^{-136} , SFig. 337 3A). Additionally, we found that correct trials following a correct trial were modestly faster than the correct trial 338 that preceded it (M \pm SD: 428 \pm 103 ms, 431 \pm 101 ms; Wilcoxon rank sum comparing median RTs, p = 339 8.48×10^{-4} , SFig. 3A). Thus, trials where the previous outcome was a correct response led to a trial with a 340 faster RT, whereas trials where the previous outcome was an error led to a trial with a slower RT. 341

Such changes in RT after a previous trial were mirrored by corresponding shifts in initial conditions. A PCA of trial-averaged firing rates organized by previous trial outcome and choice revealed that prestimulus population firing rate covaried with the previous trial's outcome. Post-error correct trials, hereafter post-error trials, showed the largest prestimulus difference in firing rates as compared to other trial outcomes (Fig. 7A, B).

A KiNeT analysis (Remington et al., 2018b) further corroborated prestimulus firing rate covariation with the 346 previous trial's outcome. Peri-stimulus trajectories for post-error trials occupied the reflected side of state space, 347 relative to the reference trajectory ("Correct" trials), as compared to all other trial types (Fig. 7C). The averaged, 348 windowed (i.e., -400:-200 ms, -200:0 ms, 0:200 ms, 200:400 ms) post-error trajectory was significantly different, 349 at p < 0.05, from equivalently averaged shuffled data (Fig. 7C). In a similar finding a decoder revealed that the 350 current trial's spiking activity can predict, at greater than chance levels, the previous trial's outcome from before 351 stimulus onset until about the overall mean RT, \sim 450 ms (equal numbers of correct and error trials, were used 352 in training the decoder, Fig. 7D), suggesting that the previous trial's outcome has an effect on the current trial's 353 pre- and poststimulus population firing rates. 354

KiNeT analyses suggested that post-error trials also had significantly slower prestimulus trajectories as compared 355 to the reference trajectory, p < 0.05 for all prestimulus windows (i.e., -400:-200 ms & -200:0 ms), (Fig. 7E), 356 suggesting that error trials or, similarly, infrequent outcomes (Danielmeier and Ullsperger, 2011) result in slower 357 population dynamics in the following trial. Additionally, trials that follow correct trials (errors generally followed 358 correct trials) have slightly faster prestimulus dynamics as compared to the reference trajectory, p < 0.05 for 359 both prestimulus windows for post-correct trials and just one prestimulus window for error trials (-200:0 ms) 360 (Fig. 7E). Finally, error and post-error trials have the slowest poststimulus trajectories in the last poststimulus 361 window (200:400 ms), (p < 0.05, Fig. 7E) consistent with their longer RTs. Altogether, these results complement 362 behavioral results in that the initial condition shifts as a function of previous trial outcome and not just due to 363 errors. These results suggest that slower or faster RTs after an error or correct trial are at least partially due to 364 slower or faster prestimulus dynamics respectively (see SFig. 3B for complementary findings in single trials). 365

Figure 7: **Prestimulus neural activity covaries with the previous trial's outcome** (**A**) The first four PCs ($PC_{1,2,3,4}$) of trial averaged firing rates aligned to checkerboard onset ('Cue' & black dashed line) of all 996 neurons from monkeys T & O and all sessions organized by choice (right - dashed lines, left - solid lines) and trial outcome (green - correct trial, cyan - correct trial following a correct trial, red - error trial, and magenta - correct trial following an error trial). Percentage variance explained by each PC presented at the top of each plot. (**B**) 1st, 3rd and 4th PC ($PC_{1,3,4}$) state space aligned to checkerboard onset (red dots). Plotting of PCs extends 400 ms before checkerboard onset and 400 ms after. Observe how neural activity separates as a function of outcome, but not by choice, up to 400 ms before stimulus onset. Different colored squares and diamonds indicate 20 ms time steps and 280 ms post-checkerboard onset respectively. (**C**) "KiNeT distance" analysis demonstrating that trajectories are spatially organized with post-error trials furthest from other trial types peri-stimulus as compared to a reference trajectory (green, middle trajectory). (**D**) Accuracy of logistic regression of spiking activity from the current trial used to predict the outcome of the previous trial. Orange outline is SEM. (**E**) "KiNeT Time to reference" (t_{ref}) analysis reveals that prestimulus 'velocity' is slower for post-error trials as compared to the reference trajectory. *Abbreviation*: a.u. - arbitrary units, * - p < 0.05, # - p = 0.05.

These results strongly suggest that some of the initial condition covariation with RT Fig. 4 might be related to 366 the previous trial's outcome. To test this hypothesis, we performed two analyses: First, we wanted to know how 367 much of the variance of the firing rate data organized by RT and choice could be accounted for by the subspace 368 spanned by the first six dimensions of the PCA organized by previous trial's outcome and choice (Elsayed et al., 369 2016, "outcome subspace", Fig. 7A, B). We chose the first six dimensions (explains $\sim 90\%$ of the variance) of 370 this outcome subspace as these dimensions were significantly above or equal to noise components (SFig. 3C). 371 This analysis revealed that 77.19% of the total variance for the firing rates organized by RT and choice was 372 explained by the first six dimensions of the outcome subspace suggesting that the previous trial's outcome has a 373 large impact in explaining prestimulus firing rate covariation with RT. 374

In a parallel analysis we performed a dPCA (Kobak et al., 2016) on the population firing rates in the 600 ms before checkerboard onset organized by previous trial's outcome and choice, and another organized by RT and choice. The respective axes that maximally separated as a function of previous trial's outcome and that maximally separated as a function of RT demonstrated significant overlap with an angle of 47.8° between them. These results suggest that the previous trial's outcome leads to a shift in prestimulus dynamics consistent with determining the speed of the dynamics and therefore eventual RTs.

Lastly, we examined if there were differences in pre- and poststimulus state with respect to choice between the different trial outcomes. Again the high-dimensional Euclidean distance between left and right choice trajectories was largely flat during the prestimulus period and increased only after stimulus onset for all trial outcomes (SFig. 30). We also found that the separation between choices increased slower for error trials as compared to all other trial outcomes (SFig. 3D).

These findings are consistent with the dynamical systems approach as they demonstrate that initial condition before stimulus onset is dependent upon trial history and that pre- and poststimulus dynamics slow down after errors as compared to after correct trials. Collectively, the past trial's outcome leads to different initial conditions, slower pre- and poststimulus dynamics and ultimately leads to RT variability, all in line with the hypothesis in Fig. 1F.

391 3. Discussion

Our goal in this study was to rigorously identify a dynamical system for the neural population activity underlying 392 decision-making as recently demonstrated in studies of neural population dynamics related to motor planning 393 and timing (Afshar et al., 2011; Remington et al., 2018b; Shenov et al., 2013; Vyas et al., 2020a). To this end, 394 we investigated the neural population dynamics in PMd of monkeys performing a red-green RT decision-making 395 task (Chandrasekaran et al., 2017; Coallier et al., 2015). The prestimulus neural state in PMd, proxy for the 396 initial condition of the dynamical system, was strongly predictive of RT, but not choice. We observed these 397 effects across and within stimulus difficulties and also on single trials. Furthermore, faster RT trials had faster 398 neural dynamics and separate initial conditions from slower RT trials. Additionally, poststimulus, choice-related 399 dynamics were altered by the inputs with easier checkerboards leading to faster dynamics than harder ones. 400 Finally, these initial conditions and the behavior for a trial depended on the previous trial's outcome, where RTs 401 and prestimulus trajectories were slower for post-error compared to post-correct trials. Together, these results 402 suggest that decision-related neural population dynamics in PMd can be well described by a dynamical system 403 where the speed of the choice (the output of the system) is strongly set by its initial conditions. However, the 404 eventual choice itself is determined by the input and the speed of these choice-related dynamics depends on the 405 initial condition. Finally, the outcome of the trial affects the initial condition of the next trial. 406

At the highest level, these observations are another compelling demonstration of the power of the dynamical systems approach (alternatively, "computation through dynamics") to explain the link between the time-varying activity of neural populations and behavior (He, 2013; Vyas et al., 2020b; Briggman et al., 2005; Chaisangmongkon et al., 2017; Mante et al., 2013; Mazor and Laurent, 2005; Remington et al., 2018b; Stroud et al., 2018). Regardless of species or brain region, an increasingly common finding is that neurons associated with cognition

and motor control are often heterogeneous and demonstrate complex time-varying patterns of firing rates and 412 mixed selectivity (Chaisangmongkon et al., 2017; Rigotti et al., 2013; Mante et al., 2013; Machens et al., 2010; 413 Hanks et al., 2015). Simple models or indices although attractive to define are often insufficient to summarize the 414 activity of these neural populations (Chandrasekaran et al., 2018; Chaisangmongkon et al., 2017; Mante et al., 415 2013), and even if one performs explicit model selection on single neurons using specialized models (Latimer et al., 416 2015), the results can be brittle because of the heterogeneity inherent in these brain regions (Chandrasekaran 417 et al., 2018). The dynamical systems approach addresses this problem by using dimensionality reduction and 418 optimization techniques to understand collective neuronal activity of different brain regions and tasks, generally 419 summarizing large population datasets in orders of magnitude fewer dimensions than were recorded from (Okazawa 420 et al., 2021; Mante et al., 2013; Machens et al., 2010). Here, we demonstrated that >90% of the variance from 421 the firing rate activity of nearly 1,000 neurons in PMd during decisions could be explained in just a few (six) 422 dimensions. 423

Besides providing a compact description of population activity, there are three other clear advances afforded 424 by using a dynamical systems approach to study decisions. First, we find lawful relationships between the low-425 dimensional activity of neural populations and task variables such as choice, RT, stimulus difficulty and past 426 outcomes (Mante et al., 2013; Okazawa et al., 2021). Second, this lawful relationship can be understood as 427 emerging from a dynamical system that is parameterized by initial conditions and inputs that subsumes much 428 of decision-making behavior (Vyas et al., 2020a). Finally, this dynamical system naturally bridges previously 429 disparate findings from SAT (Murphy et al., 2016; Heitz and Schall, 2012; Bogacz et al., 2010), post-outcome 430 adjustment (Purcell and Kiani, 2016; van den Brink et al., 2014), motor planning (Afshar et al., 2011) and timing 431 (Remington et al., 2018b) and provides a common framework for deriving models for the neural computations 432 underlying decision-making. 433

⁴³⁴ In the remainder of the discussion, we further discuss the implications of our identified dynamical system for ⁴³⁵ decision-making models, and unpack the factors that may underlie initial conditions.

Our results are an important and significant advance over a previous study of dynamics in PMd during reach 436 planning (Afshar et al., 2011). As described previously in this study, Afshar et al. (2011) showed that in a delayed 437 reach task, the position and velocity of the initial conditions correlated with RT. However, it was unclear from 438 the study, what the role of inputs was and how changes in initial conditions emerge across trials. Our study 439 answers both questions and provides a clear account of how both initial conditions and inputs jointly control the 440 dynamics in PMd, a key brain region involved in mapping sensory cues to actions (Kurata and Hoffman, 1994). 441 The sensory evidence, which acts as the input combines with initial conditions determining the choice of the 442 monkeys and also alters the speed of the choice. We also demonstrated that changes in initial conditions emerge 443 due to the outcome of the previous trial with errors leading to large shifts in the initial condition and significantly 444 altering subsequent dynamics. 445

Our results, mainly that decision-related neural activity and behavior are well described by a dynamical system 446 dependent upon both initial conditions and inputs, are inconsistent with simple drift diffusion models (DDMs) 447 where decision-making behavior is solely driven to a bound by accumulation of sensory evidence (Ratcliff, 1978; 448 Ratcliff et al., 2016; Hawkins et al., 2015). Including variable drift rates and starting points in a DDM would be 449 insufficient towards recapitulating prestimulus decision-related signals that covary with RT. Variable non-decision 450 times could potentially explain the RT behavior reported here. However, the neural effect of a change in non-451 decision time is thought to relate to changes in the initial latency of decision-related responses and does not 452 predict changes in the prestimulus neural state. Thus, while simple DDMs with a variable non decision time may 453 explain the behavior observed herein they would fail to recreate the observed variability in the initial condition. 454

We believe that cognitive process models with an additive or multiplicative stimulus-independent gain signal, previously described as "urgency" and successfully used to describe monkey behavior and neural activity (Cisek et al., 2009; Thura et al., 2014; Cowley et al., 2020; Murphy et al., 2016), could faithfully model the behavior and the neural dynamics. A variable additive gain signal, which adds inputs to accumulators for left and right

choices in a race model for decisions, would lead to different initial conditions and thus faster dynamics for faster 459 RTs and slower dynamics for slower RTs (Murphy et al., 2016). Similarly, a multiplicative gain signal would also 460 lead to differences in both the initial firing rates and control the speed of decision-making behavior (Murphy 461 et al., 2016; Cisek et al., 2009). Both types of gain signals generate similar predictions about RT and choice 462 behavior and are often difficult to distinguish using trial-averaged firing rates as done here. One way to resolve 463 this impasse would be to employ single-trial analysis (Peixoto et al., 2021) of neural responses in multiple brain 464 areas using a task paradigm that dispenses sensory evidence over the course of a trial such as in the tokens 465 (Thura and Cisek, 2014) or pulses task (Hanks et al., 2015). 466

Typically, researchers have focused on the slowing down of responses after an error, a phenomenon termed post-467 error slowing (Dutilh et al., 2012; Purcell and Kiani, 2016). However, our findings suggest that both correct and 468 error outcomes can influence the pre- and poststimulus decision-making neural dynamics on subsequent trials 469 suggesting that post-error slowing could be better understood under the umbrella of post-outcome adjustments 470 (Danielmeier and Ullsperger, 2011). It is currently unclear how these post-outcome adjustments in PMd emerge. 471 One possibility is that these adjustments emerge from the internal dynamics of PMd itself. Errors vs. correct 472 trials could lead to a shift in the initial condition due to recurrent dynamics that occur in PMd due to the 473 presence or absence of reward. Such error related signals have been observed in premotor and motor cortex and 474 have even been used to augment brain computer interfaces (Even-Chen et al., 2017). Alternatively, the changes 475 observed in PMd could emerge from inputs from other brain areas such as the anterior cingulate cortex (ACC) 476 which is known to monitor trial outcome (Hyman et al., 2013), or the supplementary motor area (SMA), which 477 has been implicated in timing of motor actions and evaluative signals related to outcome (Bogacz et al., 2010; 478 Ullsperger et al., 2014). Simultaneous recordings in PMd and these brain areas are necessary to tease apart the 479 contribution, if any, of these areas to the initial condition changes observed in PMd. 480

Barring Fig. 5 and Fig. S3, our description of decision-related dynamics largely focused on trial-averaged activity. 481 Even with such a constraint we were able to identify that the position of initial conditions predict RT, and are 482 modified by the outcome of the previous trial and that the dynamics for faster RT trials are further along the 483 movement initiation path compared to slower RT trials. We also demonstrated that sensory inputs combined 484 with initial conditions to alter the speed of dynamics and drive choice-related behavior. We believe that even 485 further insights will be available using single-trial analysis. In particular, here we were unable to fully characterize 486 the relative contributions of the position of the initial condition and the velocity of the initial condition to 487 decision-related dynamics and behavior. We anticipate that further analyses of the curvature, velocity relative 488 to the mean trajectory, path length, and speed of the trajectories will lead to an even better description of the 489 single-trial dynamics underlying decisions as has been done for motor planning (Afshar et al., 2011). Note, we 490 were unable to fully perform such analyses in the current study as we often had only a few neurons per session 491 in Monkey O. The session shown in Fig. 5 and Fig. S3 was an exception as we had 23 well-modulated units in 492 Monkey T. 493

We have shown that the outcome of the previous trial alters the initial conditions for subsequent trials. There 494 are certainly other factors that lead to changes in the initial conditions. In particular, recent studies have shown 495 that both neural activity and behavior as indexed by RT, performance, and pupil size drifts over slow time scales 496 and that these slowly drifting signals are likely a process independent of deliberation on sensory evidence (Cowley 497 et al., 2020; Ferguson and Cardin, 2020). Such effects often emerge over several hours. We believe that such 498 effects could also contribute to the changing initial conditions observed in our study. However, we were unable 499 to assess these effects as 1) we did not measure pupil size, 2) significant amounts of our data were collected with 500 single electrode recordings over short time periods (often 10-15 minutes or so for a tranche of 300-500 trials), 501 and 3) even in sessions where Plexon U-probes were used to simultaneously record from neural populations we 502 often paused the task whenever the animal disengaged from the task or had a sudden decrease in performance. 503 Furthermore, after such pauses we generally increased reward sizes to remotivate the animals. These interventions 504 are often standard for electrophysiological recordings in behaving monkeys but preclude the assessment of the 505 effects of slow fluctuations on decision-making. Nevertheless, we believe that such effects are likely to be an 506 additional crucial source of variability for the initial condition, especially given that it was found to be a factor 507

independent of sensory evidence (Cowley et al., 2020) as in our study, and likely alters decision-making dynamics and behavior. A rich area for future research is to assess whether the same effects observed in V4, and caudal prefrontal cortex in Cowley et al. (2020) also occurs for perceptual decisions in PMd.

We found that prestimulus neural activity in PMd and in this task did not covary with or predict eventual choice. However prestimulus neural activity in lateral intraparietal cortex was found to be predictive of choice for low coherence or harder random dot stimuli (Shadlen and Newsome, 2001). Our lack of an observed covariation between the initial condition and choice may be due to the randomization of target configurations, thus the monkeys in our experiment were disincentivized from preplanning a reach direction. To be clear, our lack of a finding does not preclude prestimulus activity in other brain areas or even in PMd with different tasks from covarying with choice (Peixoto et al., 2018).

We believe that the effects we see where the initial conditions predict the RT of the animal in a cognitive task are 518 likely to be observed in many brain areas. For example, previous results recorded in monkey dorsomedial prefrontal 519 cortex during timing tasks (Remington et al., 2018b) and in motor cortex/PMd from motor planning tasks (Afshar 520 et al., 2011) bear out the contention that our observation of prestimulus PMd neural population activity covarying 521 with and predicting RTs in a decision-making task is likely not solely localized to PMd or constrained to occur only 522 in this task. In fact, differences in baseline modulation of neural activity between speed and accuracy conditions 523 of speed-accuracy tradeoff tasks (Heitz and Schall, 2012) is found in frontal eye field (Heitz and Schall, 2012) 524 and pre-supplementary motor area (Bogacz et al., 2010). We also showed that prestimulus beta band activity 525 in this same task was correlated with RT (Chandrasekaran et al., 2019). Additionally, in a study of post-error 526 slowing the level of prestimulus phase synchrony in fronto-central electrodes, was found to positively correlate 527 with the speed of RTs (van den Brink et al., 2014). These findings of neural activity changing as a result of 528 different conditions of a speed-accuracy tradeoff task or being predictive of RTs, strongly suggest that initial 529 conditions in multiple brain regions, and potentially some putative fronto-central motor network, effect the speed 530 of a response. In other words, changes in the initial conditions in various brain regions before stimulus onset is 531 likely not a localized effect and suggests either broad signalling (Derosiere et al., 2022) from some source or even 532 feed-forward/feedback mechanisms between brain regions. 533

534 (Discussion: 2274 words)

535 3.1. Conclusion

Research employing dynamical systems approaches demonstrate that future population level activity and behavior 536 is sensitive to initial conditions such that initial conditions were predictive of RTs in motor planning or timing 537 tasks (Afshar et al., 2011; Remington et al., 2018b). However it was unclear whether decision-related neural 538 activity was similarly sensitive to initial conditions and if so, how such sensitivity might interact with sensory 539 evidence accumulation, a well-studied aspect of decision-making (e.g., Roitman and Shadlen, 2002). Our first 540 main contribution is that we observe prestimulus neural dynamics predictive of the RT of a decision, equivalent 541 to the predictive power of the eventual stimulus itself, despite lacking an explicit manipulation of speed-accuracy 542 tradeoff. Our second main contribution was to show that both initial conditions and sensory evidence influenced 543 choice-related neural population dynamics and ultimately behavior. Finally, our third contribution was to show 544 that initial conditions depended on previous outcomes, and, in turn, altered poststimulus dynamics and RTs. 545 We believe that this suite of findings through the lens of the dynamical systems approach is a starting point for 546 understanding the dynamical system underlying decision-making behavior. The insights from this study could 547 be further expanded via single-trial analysis of simultaneous recordings in multiple decision-related regions, by 548 examining how baseline neural activity predicts various aspects of behavior, and ultimately how behavior or global 549 state then feeds back into initial conditions. 550

551 4. Methods

552 Several method sections are adapted from Chandrasekaran et al. (2017) as the same data set is reanalyzed in this 553 study. For completeness and readability, some aspects are replicated here, but much of the methods focuses on

⁵⁵⁴ key details about the various dimensionality reduction techniques such as PCA, decoding, and LFADS analyses.

555 4.1. Code and data availability

MATLAB scripts for generating all the figures are available with the paper along with the relevant data. HTML code that allows free rotation of the trajectories in principal component (PC) spaces are also available in the ZIP file.

559 4.2. Subjects

Experiments were performed using two adult male macaque monkeys (Macaca Mulatta; monkey T, 7 years, 14 kg 560 & monkey O, 11 years, 15.5 kg) trained to touch visual targets for a juice reward. Monkeys were housed in a social 561 vivarium with a normal day/night cycle. Protocols for the experiment were approved by the Stanford University 562 Institutional Animal Care and Use Committee. Animals were initially trained to come out of their housing and 563 to sit comfortably in a chair. After initial training (as described in Chandrasekaran et al. (2017)), monkeys 564 underwent sterile surgery where cylindrical head restraint holders (Crist Instrument Co., Inc., Hagerstown, MD, 565 United States) and standard circular recording cylinders (19 mm diameter, Crist Instrument Co., Inc.) were 566 implanted. Cylinders were placed surface normal to the cortex and were centered over caudal dorsal premotor 567 cortex (PMdc; +16, 15 stereotaxic coordinates, see Fig. 2G). The skull within the cylinder was covered with a 568 thin layer of dental acrylic. 569

570 4.3. Apparatus

Monkeys sat in a customized chair (Synder Chair System, Crist Instrument Co., Inc.) with their head restrained. 571 The arm that was not used to respond in the task was gently restrained with a tube and cloth sling. Experi-572 ments were controlled and data collected using a custom computer control system (Mathworks' xPC target and 573 Psychophysics Toolbox, The Mathworks, Inc., Natick, MA, United States). Stimuli were displayed on an Acer 574 HN2741 monitor approximately 30 cm from the monkey. A photodetector (Thorlabs PD360A, Thorlabs, Inc., 575 Newton, NJ, United States) was used to record the onset of the visual stimulus at a 1 ms resolution. A small 576 reflective spherical bead (11.5 mm, NDI passive spheres, Northern Digital, Inc., Waterloo, ON, Canada) was 577 taped to the middle finger, 1 cm from the tip, of the active arm of each monkey; right for T and left for O. The 578 bead was tracked optically in the infrared range (60 Hz, 0.35 mm root mean square accuracy; Polaris system, 579 NDI). Eye position was tracked using an overhead infrared camera with an estimated accuracy of 1° (ISCAN 580 ETL-200 Primate Eye Tracking Laboratory, ISCAN, Inc., Woburn, MA, United States). To get a stable image 581 for the eye tracking camera, an infrared mirror (Thorlabs, Inc.) transparent to visible light was positioned at a 582 45° angle (facing upward) immediately in front of the nose. This reflected the image of the eye in the infrared 583 range while allowing visible light to pass through. A visor placed around the chair prevented the monkey from 584 touching the juice reward tube, infrared mirror, or bringing the bead to its mouth. 585

586 4.4. Task

Experiments were made up of a sequence of trials that each lasted a few seconds. Successful trials resulted in a 587 juice reward whereas failed trials led to a time-out of 2-4 s. A trial started when a monkey held its free hand on 588 a central circular cue (radius = 12 mm) and fixated on a small white cross (diameter = 6 mm) for \sim 300-485 589 ms. Then two isoluminant targets, one red and one green, appeared 100 mm to the left and right of the central 590 hold cue. Targets were randomly placed such that the red target was either on the right or the left trial-to-trial, 591 with the green target opposite the red one. In this way color was not tied to reach direction. Following an 592 additional center hold period (400-1000 ms) a static checkerboard stimulus (15×15 grid of squares; 225 in total, 593 each square: $2.5 \text{ mm} \times 2.5 \text{ mm}$) composed of isoluminant red and green squares appeared superimposed upon 594 the fixation cross. The monkey's task was to move their hand from the center hold and touch the target that 595 matched the dominant color of the checkerboard stimulus for a minimum of 200 ms (for full trial sequence see 596 Fig. 2B). For example, if the checkerboard stimulus was composed of more red squares than green squares the 597 monkey had to touch the red target in order to have a successful trial. Monkeys were free to respond to the 598 stimulus as quickly or slowly, within an ample $\sim 2s$ time frame, as they 'chose'. There was no delayed feedback 599

therefore a juice reward was provided immediately following a successful trial (Roitman and Shadlen, 2002). An error trial or miss led to a timeout until the onset of the next trial.

The checkerboard stimulus was parameterized at 14 levels of red (R) and complementing green (G) squares ranging from nearly all red (214 R, 11 G) to all green squares (11 R, 214 G) (for example stimuli see Fig. 2C). These 14 levels are referred to as signed coherence (SC), defined as $SC = 100 \times \frac{(R-G)}{(R+G)}$ (R: 4%:90%, G: -4%:-90%). Correspondingly there are seven levels of color coherence, agnostic to the dominant color, defined as $C = 100 \times \frac{|R-G|}{(R+G)}$ (4-90%).

The hold duration between the onset of the color targets and onset of the checkerboard stimulus was randomly chosen from a uniform distribution from 400-1000 ms for monkey T and from an exponential distribution for monkey O from 400-900 ms. Monkey O attempted to anticipate the checkerboard stimulus therefore an exponential distribution was chosen to minimize predictability.

⁶¹¹ 4.5. Effects of coherence on accuracy and reaction time (*RT*)

Behavior was analyzed by fitting psychometric and RT curves on a per-session basis and averaging the results across sessions. Behavioral data was analyzed in the same sessions as the electrophysiological data. In total there were 75 sessions for monkey T (128,774 trials) and 66 sessions for monkey O (108,365 trials). On average there were \sim 1,500 trials/session. Both incorrect and correct trials for each *SC* were included for estimating RT/session.

Data were fit to a psychometric curve to characterize how discrimination accuracy changed as a function of stimulus coherence. For each session a monkey's sensitivity to the checkerboard stimulus was estimated by estimating the probability (p) of a correct choice as a function of the color coherence of the checkerboard stimulus (c). The accuracy function was fit using a Weibull cumulative distribution function.

Weibull cumulative distribution function:

$$p(c) = 1 - 0.5e^{-(\frac{c}{\alpha})^{\gamma}}$$
(2)

The discrimination threshold α is the color coherence level at which the monkey would make 81.6% correct choices. The parameter γ describes the slope of the psychometric function. Threshold and slope parameters were fit per session and averaged across sessions. We report the mean and standard deviation of threshold and R^2 values from the fit in the text.

Mean RT was calculated per SC on a session-by-session basis and averaged across sessions. Results are displayed in Fig. 2E with error bars denoting $2 \times SEM$ and lines between the averages to guide the eyes. RT was also regressed with $log_{10}(C)$ per session. The fit coherence-RT model was used to predict RTs and calculate R^2 on a per session basis. R^2 values were averaged across sessions per monkey and are reported in Fig. 2F as percentage of variance explained. The general framework and equations for linear regression and R^2 calculations are provided in 4.16.

631 4.6. Electrophysiological recordings

Electrophysiological recordings were guided by stereotaxic coordinates, known response properties of PMd, and neural responses to muscle palpation. Recordings were made anterior to the central sulcus, lateral to the precentral dimple and lateral to the spur of the arcuate sulcus. Electrodes were placed in the PMd contralateral to the dominant hand of the monkey (T: right arm, O: left arm). Recording chambers were placed surface normal to the cortex to align with the skull of the monkey and recordings were performed orthogonal to the surface of the brain. Estimates of upper and lower arm representation was confirmed with repeated palpation at a large number of sites to identify muscle groups associated with the sites.

⁶³⁹ Single electrode recording techniques were used for a subset of the electrophysiological recordings. Small burr ⁶⁴⁰ holes in the skull were made using handheld drills (DePuy Synthes 2.7 to 3.2 mm diameter). A Narishige drive

(Narishige International USA, Inc., Amityville, NY, United States) with a blunt guide tube was placed in contact with the dura. Sharp FHC electrodes (> 6 M Ω , UEWLGCSEEN1E, FHC, Inc., Bowdoin, ME, United States) penetrated the dura and every effort was made to isolate, track, and stably record from single neurons.

180 µm thick 16-electrode linear multi-contact electrode (U-probe, see Fig. 2G; Plexon, Inc., Dallas, TX, 644 United States); interelectrode spacing: 150 μ m, contact impedance: \sim 100 k Ω) recordings were performed 645 similarly to single electrode recordings with some modifications. Scraping away any overlying tissue on the dura, 646 under anesthesia, and a slightly sharpened guide tube aided in slow U-probe penetration (\sim 2-5 µm/s). U-647 probe penetration was stopped once a reasonable sample of neurons was acquired, potentially spanning multiple 648 cortical layers. Neural responses were allowed to stabilize for 45-60 minutes before normal experimentation 649 began. Monkey T had better recording yields on average (\sim 16 units/session) than monkey O (\sim 9 units/session). 650 Additionally, lowering the electrode necessitated careful observation to ensure the electrode did not bend or break 651 at the tip, or excessively dimple the dura. Therefore, it was not possible to precisely localize the U-probes with 652 a grid system between sessions. 653

654 4.7. Unit selection and classification

The electrophysiological recordings consist of 996 units (546 units in T and 450 units in O, including both single neurons and multi-units) recorded from PMd of the two monkeys as they performed the task over 141 sessions. Chosen units were included as they were well isolated from other units/separated from noise and modulated activity in at least one task epoch.

⁶⁵⁹ U-probes were useful for recording from isolated single neurons as U-probes are low impedance (\sim 100 k Ω) with a ⁶⁶⁰ small contact area. A conservative threshold was used to maximize the number of well defined waveforms and to ⁶⁶¹ minimize contamination from spurious non-neural events. Single neurons were delineated online by the 'hoops' ⁶⁶² tool of the Cerebus system software client (Blackrock Microsystems, Salt Lake City, UT, United States) after the ⁶⁶³ electrodes had been in place for 30 - 45 minutes. When a spike was detected via thresholding, a 1.6 ms snippet ⁶⁶⁴ was stored and used for subsequent evaluation of the clusters as well as modifications needed for spike sorting.

Some electrodes in U-probe recordings captured mixtures of 2 or more neurons, well separated from each other and noise. In the majority of cases the waveforms were separable and labeled as single units. These separations were verified by viewing the waveforms in principal component (PC) space using custom code in MATLAB (The MathWorks, Inc., Natick, MA, United States). MatClust the MATLAB based clustering toolbox or Plexon Offline Sorter (Plexon, Inc.) were used to adjust the clusters that were isolated online.

Recording activity labeled as 'multi-units' were mixtures of 2 or more neurons not separable using a PCs method or consisted of recordings with waveforms only weakly separable from noise.

The number of interspike interval (ISI) violations after clustering and sorting was used to mitigate subjectivity in the classification of units. A unit was labeled as a single neuron if the percentage of ISI violations (refractory period of ≤ 1.5 ms) was $\leq 1.5\%$, otherwise it was labeled as a multi-unit. 801/996 PMd units were labeled as single neurons (T: 417, O: 384, median ISI violation = 0.28%, mean ISI violation = 0.43%, ~0.13 additional spikes/trial). Therefore 195/996 units were labeled as multi-unit (T: 129, O: 66, mean ISI violation = 3.36%, ~1.4 additional spikes/trial).

Units from both monkeys were pooled together as the electrophysiological characteristics were similar. Changeof-mind trials (\sim 2-3%) were excluded from averaging as the change in reach direction mid-movement execution made the assignment of choice ambiguous. Incorrect and correct trials arranged by choice were averaged together.

681 4.8. Peri-event firing rates

We estimated the peri-event time histograms aligned to various of events such as checkerboard onset (e.g., in Fig. 3) and for principal component analysis using the following procedure. 1) We first binned spike times for each trial at 1 ms resolution for a condition of interest (say a fast RT bin and left reaches) aligned to checkerboard or movement onset. 2) We then convolved the spike train with a Gaussian kernel ($\sigma = 30$ ms) to estimate the

instantaneous firing rate (e.g., $r_i(t, RT, left)$) for a trial. 3) We then used these trials to estimate the mean and standard error of the firing rate for a condition (e.g., $\bar{r}(t, RT, left)$).

When firing rates were aligned to checkerboard onset, we removed all spikes 50 ms before movement onset until the end of the trial. We performed this operation to ensure movement related spiking activity did not spuriously lead to ramping in the checkerboard period.

⁶⁹¹ 4.9. Principal component analysis (PCA) of PMd firing rates

PCA was used to examine firing rate variance in the recorded PMd neural population. PCA reveals dimensions that explain a large percentage of the data while making few assumptions about the underlying structure of the data. The dimensions extracted by PCA may not always be meaningful however they often align well with behavioral variables.

The general procedure for performing a PCA involved creating a 4D matrix of all 996 units and their average 696 firing rate activity (trial spike times censored post RT trial-by-trial and convolved with 30 ms wide Gaussian 697 kernel as explained above) windowed about checkerboard onset (\sim -600 ms: \sim 1200 ms) and organized by level 698 of condition (e.g., coherence, RT, or past outcome) within a reach direction. Typical matrix organization was 699 windowed firing rate x units x reach x coherence/RT/past outcome (\sim 1800 x 996 x 2 x 7/11/2). The raw data 700 was centered by subtracting the mean of each column (i.e. units) and then normalized by dividing by the square 701 root of the 99th percentile of that column (i.e., soft normalization). Soft normalization reduces the bias of 702 units with high firing rates and ensures that each unit has roughly the same overall variability across conditions. 703 Eigenvectors, eigenvalues, and the projected data were calculated using the pca function in MATLAB. 704

⁷⁰⁵ 4.10. Estimation of number of dimensions to explain the data

We used the approach developed by Machens et al. (2010) to estimate the number of dimensions that best described our data. The assumption of this method is that the firing rates of the k^{th} neuron for the i^{th} trial given a RT bin and choice $(r_k^i(t, RT, choice))$ are assumed to be composed of a mean "signal" rate $(q_k(t|RT, choice))$ and a "noise" rate that fluctuates across trials $(\eta_k^i(t, RT, choice))$.

$$r_k^i(t, RT, choice) = q_k(t, RT, choice) + \eta_k^i(t)$$
(3)

Noise here encompasses both contributions from the random nature of spike trains as well as systematic but unknown sources of variability. Averaging over trials:

$$\bar{r}_k(t|RT, choice) = q_k(t|RT, choice) + \bar{\eta}_k(t|RT, choice)$$
(4)

⁷¹⁰ Where $\bar{\eta_k}(t, RT, choice)$ is the average noise over N instantiations (i.e., trials) of the noise term $\eta_k^i(t, RT, choice)$.

The overall mean firing rate over time and conditions (\bar{r}) is given as:

=

$$\bar{r}_k = \langle q_k(t, RT, choice) \rangle + \langle \bar{\eta}_k(t, RT, choice) \rangle$$
(5)

$$= q_k + \bar{\eta}_k \tag{6}$$

Note, none of these assumptions are strictly true. Noise may not be additive and it may depend on RT bin and may increase or decrease during various phases of the trial. However, these assumptions illustrate the problem encountered in identifying the number of dimensions to best describe the data.

715 Under these assumptions PCA attempts to identify a covariance matrix as

$$C_{ij} = \langle \bar{r}_i(t, RT, choice) - \bar{r}_i \rangle \langle \bar{r}_j(t, RT, choice) - \bar{r}_j \rangle$$
(7)

⁷¹⁶ Which can be simplified (see Machens et al. (2010) for more details) to:

$$C_{ij} = Q_{ij} + H_{ij} \tag{8}$$

⁷¹⁷ Where Q_{ij} is a signal covariance and H_{ij} is the noise covariance.

Our goal is to perform PCA on Q_{ij} . However, because our data were not collected simultaneously, we cannot r19 calculate Q_{ij} as we do not have a good estimate of H_{ij} .

Nevertheless, even with trial-averaged data, one can provide an estimate of H_{ij} by constructing putative noise matrices based on the simplifying assumption that the noise is largely independent in neurons with perhaps modest noise correlations. To generate representative noise traces for our firing rates, notice that if one subtracts:

$$r_i^k(t|RT, choice) - r_i^l(t|RT, choice) = \eta_i^k(t, RT, choice) - \eta_i^l(t, RT, choice)$$
(9)

723 Which is just subtraction of two random instantiations of the same process, which can be written as:

$$\eta_i^k(t, RT, choice) - \eta_i^l(t, RT, choice) = \sqrt{2}\eta_i^m(t, RT, choice) = \sqrt{2M}\bar{\eta}_i(t, RT, choice)$$
(10)

Where the final equality emerges from the equations for standard error of the mean. For example, $var(\bar{X}) = var(\sum_{i=1}^{M} \frac{X_i}{M}) = \sum_{i=1}^{M} \frac{var(X_i)}{M}$.

Thus, we can generate estimates of the "average" noise $\bar{\eta}_i(t, RT, choice)$

$$\bar{\eta}_i(t, RT, choice) = \frac{1}{\sqrt{2M}} (r_i^k(t, RT, choice) - r_i^l(t, RT, choice))$$
(11)

⁷²⁷ Using this equation, we can estimate H_{ij} .

⁷²⁸ We denote C_{ij} as the "signal+noise" covariance matrix and H_{ij} as the "noise" covariance matrix. We estimate ⁷²⁹ the eigenvalues and eigenvectors of both covariance matrices and compare them to identify the number of ⁷³⁰ dimensions needed to explain the data. We used bootstrapping to derive error estimates on the signal+noise ⁷³¹ PCA and identified the number of dimensions as the first dimension where signal+noise variance was significantly ⁷³² below the noise variance.

733 4.11. Kinematic analysis of neural trajectories (KiNeT)

⁷³⁴ We used the recently developed KiNeT analysis (Remington et al., 2018b) to characterize how state space ⁷³⁵ trajectories evolve over time in terms of relative speed and position as compared to a reference trajectory. We ⁷³⁶ used the first six PCs (\sim 90% of variance) of the PCAs organized by choice and RT/outcome as these PCs were ⁷³⁷ significantly different from noise in both PCAs (Machens et al., 2010).

As such we have a collection of six-dimensional trajectories $(\Omega_1, \Omega_2 \dots \Omega_n)$ differing in RT bins and choice in 738 one analysis (Fig. 4C-F) and trial outcome and choice in another (Fig. 7C, E). The trajectory associated with 739 the middle RT bin (cyan, Fig. 4C, F) and the trajectory associated with the "Correct" trial outcome (Fig. 7C, 740 E) were chosen as 'reference' trajectories (Ω_{ref}) to calculate various parameters (e.g., Time to reference) of the 741 other non-reference trajectories (i.e., trajectories associated with the ten other RT bins and the three other trial 742 outcomes). All of the following calculations in this section were first performed within a particular choice and 743 then averaged across choices. Please refer to Fig. S4 for a visualization of KiNeT analyses and glossary of terms 744 used in the following equations. 745

Time to reference: KiNeT finds the Euclidean distances between the six-dimensional position of the reference trajectory at timepoint j ($s_{ref}[j]$) and the six-dimensional position of a non-reference trajectory (Ω_i) at all of its timepoints ($\Omega_i(\tau)$). We identified the timepoint ($t_i[j]$) at which the six-dimensional position of a non-reference trajectory ($s_i[j]$) is closest to $s_{ref}[j]$ (minimum Euclidean distance).

$$s_i[j] = \Omega_i(t_i[j]) \tag{12}$$

$$t_i[j] = argmin_\tau ||\Omega_i(\tau) - s_{ref}[j]||$$
(13)

If the non-reference trajectory reaches a similar position to the reference trajectory at an 'earlier' timepoint then it's a 'faster' trajectory $(t_i[j] < t_{ref}[j])$ whereas if it reaches the same point at a 'later' timepoint then it is a 'slower' trajectory $(t_i[j] > t_{ref}[j])$ (Fig. 4F).

Distance: The distance between reference and non-reference trajectories at timepoint j $(D_i[j])$ is taken as the minimum Euclidean distance between the position of the reference trajectory at timepoint j $(s_{ref}[j])$ and the position of the non-reference trajectory at all its timepoints $(s_i[j])$. Additionally, the size of the angles between a normalized non-reference trajectory and normalized trajectories for the 1st and last conditions (e.g., 1st and last RT bins) determines whether the current non-reference trajectory is closer to either the 1st or last condition. As defined here, if a trajectory is closer (i.e. smaller angle) to the trajectory for the 1st condition then $(D_i[j])$ is positive, otherwise it is negative (Fig. 4C).

$$D_i[j] = \pm ||s_{ref}[j] - s_i[j]||$$
(14)

Angle: KiNeT computes the vector between adjacent trajectories by subtracting the positions of two nonreference trajectories when they are respectively closest to the reference trajectory at timepoint j. These vectors are then normalized and all the angles between all adjacent normalized vectors is found at all timepoints. Finally, the average angle is found at each timepoint between all adjacent trajectories (Fig. 4E).

$$\Delta_i^{\Omega}[j] = s_{i+1}[j] - s_i[j] \tag{15}$$

$$\theta_i[j] = \angle (\Delta_i^{\Omega}[j], \Delta_{i+1}^{\Omega}[j]) \tag{16}$$

Subspace similarity: We first identified normalized vectors between adjacent trajectories for all timepoints. We 764 then averaged these normalized vectors, so that we have the mean between trajectories (i.e. conditions) vector 765 for each timepoint. This mean vector is again normalized as averaging normalized vectors doesn't maintain unit 766 length (Δ). Essentially the normalized average vector is representative of the geometry of the subspace. We 767 calculate the angle between the average vector at timepoint t ($\overline{\Delta}[t]$ and the average vector at the first timepoint 768 $ar{\Delta}[1]$, for all timepoints $t\in au$. In other words we are measuring how this vector, representative of the state 769 space, rotates relative to the first timepoint across a trial (Fig. 4D). This data is calculated separately for each 770 choice and again is bootstrapped and averaged across the separate reaches and then across the bootstraps. 771

$$\bar{\theta}[t] = \angle(\bar{\Delta}[t], \bar{\Delta}[1]) \quad \forall \quad t \in \tau$$
(17)

772 4.12. Scalar Speed

⁷⁷³ We computed scalar speed in firing rate state space for the prestimulus period within a RT bin (Fig. 4G) as the

 ℓ^2 norm between the six-dimensional coordinates, of the PC data at adjacent 10 ms time steps, per RT bin and for each choice separately.

$$\ell_i^2(t) = ||\Omega_i(t+\delta t) - \Omega_i(t)||_2$$
(18)

Where $\Omega_i(t + \delta t)$ and $\Omega_i(t)$ are six-dimensional trajectories within condition i at time t + δt and time t in the prestimulus period, respectively. $\ell_i^2(t)$ is the ℓ^2 norm between six-dimensional trajectories within a condition at time t and t + 1. We then averaged speeds across choices and over the entire prestimulus period (-400 ms to 0).

The plotted 'prestimulus firing rate speed' was averaged across 50 bootstraps in which trials were sampled with replacement 50 times (Fig. 4G). Separate PCA and speed calculations were performed per bootstrap.

782 4.13. Choice Selectivity Signal

We estimated the 'choice selectivity signal' by calculating the Euclidean distance between left and right reaches at all timepoints for the first six PCs within each condition (i.e., RT bins (Fig. 4H & Fig. 6D) and coherence (Fig. 6B).

$$CS(t) = ||\Omega_L(t) - \Omega_R(t)||_2$$
(19)

 $_{783}$ $\Omega_L(t)$, and $\Omega_R(t)$ - the six-dimensional location in state space for a left and right choice at time t.

To calculate the latency of this choice selectivity signal, we fit the time varying choice selectivity signal with a piecewise function of the form

$$CS(t) = b \quad \forall \quad t \le t_{Latency} \tag{20}$$

$$CS(t) = m(t - t_{Latency})^2 \quad \forall \quad t > t_{Latency}$$
⁽²¹⁾

786 4.14. Initial condition as a function of RT and coherence

To estimate the initial conditions shown in Fig. 6E, F, we performed the following procedure. For each coherence and RT bin, we concatenated the average location in the six-dimensional state space in the -300 ms to -100 ms epoch before checkerboard onset for both reach directions and obtained a 77x12 matrix (7 coherences, 11 RT bins, and 2 choices). We then performed a PCA on this 77x12 matrix and used the top PC as a measure of the initial condition that we used for plotting and subsequent partial correlation analysis.

792 4.15. Latent Factors Analysis of Dynamical Systems (LFADS)

LFADS is a generative model which assumes that neuronal spiking activity is generated from an underlying 793 dynamical system (Pandarinath et al., 2018). This dynamical system is assumed to be relatively low-dimensional 794 (i.e. considerably smaller than the number of neurons involved) and latent factors can be extracted and exploited 795 to recreate spiking activity on single trials. This method uses a trained autoencoder to generate 'initial conditions' 796 based on a trial's neurons' spike counts. This 'latent code' serves as the initial condition to the generator RNN. 797 From the latent code the generator infers the latent factors of all the neurons in that trial. Here LFADS was 798 used for a single session which recorded from 23 neurons. Our model consisted of eight latent factors to recreate 799 spiking activity of single trials. Since these factors are not orthogonal to each other, PCA was performed on these 800 eight factors and the first three PCs were visualized in Fig. 5A, B and Fig. S3B. Please refer to Pandarinath 801 et al. (2018) for fuller descriptions of the LFADS method. 802

⁸⁰³ 4.16. Linear regression to relate RT and firing rate, and logistic regression to decode choice

We used linear and logistic regressions (decoders) to determine the variance in RT explained by spiking activity 804 and whether spiking activity predicted choice or past outcomes, respectively. For these analyses, we leveraged 805 the U-probe sessions where multiple neurons were recorded from at once. For monkey T, we used 24 sessions 806 (36,690 trials) where there was a minimum of 9 neurons (one session only has 2 neurons; otherwise all other 807 sessions had at least 9) and a maximum of 32 neurons. For monkey O, we used 27 sessions (30,831 trials) where 808 there was a minimum of 5 neurons in a single session and a maximum of 18. Some sessions had distinct portions 809 (e.g., the electrode was moved). In the later portion of three sessions, 2 neurons were recorded from and in 810 another, 3 neurons were recorded from. Otherwise in all other sessions at least 5 neurons were recorded from. 811 Variance explained and decoding accuracy shown in Fig. 5 is pooled across both monkeys. 812

For regression and decoding analyses, we used 1800 ms of spiking activity from each trial (600 ms prestimulus and 1200 ms poststimulus). We binned the spike times. For the choice decoder, we used 20 ms nonoverlapping bins. For the outcome decoder, we used 50 ms overlapping (10 ms time step) bins. This provided us with 90 timepoints for the choice decoder, and 72 timepoints for the outcome decoder across all units within a session.

817 Linear Regression:

For analysis of the relationship between activity in PMd and RT, we regressed spike counts for each bin for all trials across all units for that session to RT according to the following equation:

$$RT_i = \beta_0 + \sum_{j=1}^N \beta_j X_{ij}(t) + \beta_c c_i$$
(22)

Where $RT_i(t)$ is the RT on the i^{th} trial, $X_{ij}(t)$ is the spike count in a 20 ms bin for the i^{th} trial and the j^{th} unit, c_i is the coherence for the i^{th} trial, and the $\beta_{j/c}$ are coefficients for the model. After regression, we calculated variance explained by spiking activity and coherence together for each bin by using the standard equation for variance explained.

$$R^{2} = 1 - \frac{\sum_{k=1}^{M} (RT_{k} - \widehat{RT}_{k})^{2}}{\sum_{i=k}^{M} (RT_{k} - \overline{RT})^{2}}$$
(23)

⁸²⁰ Where \overline{RT} is the mean RT, RT_k is the RT for the k^{th} trial, and $\widehat{RT_k}$ is the RT predicted for the k^{th} trial.

For assessing if the R^2 values were significant, we computed a shuffled distribution (500 shuffles) where we shuffled the trials to remove the relationship between the RTs and spiking activity. We then assessed if the per bin R^2 values were significantly different from the 99th percentile of the shuffled distribution R^2 values.

Logistic Regression to decode choice: For decoding choice and previous outcome on a bin-by-bin basis, we used a regularized logistic regression approach. Decoders were trained with equal number of trials for the opposing outcomes (i.e., left vs. right reaches; previous correct vs. previous error trials). The logistic regression approach assumes that the log odds in favor of one event (e.g., left) vs. right reach is given by the following equations:

$$log\left(\frac{p(Left|X)}{1 - p(Left|X)}\right) = \beta_0 + \sum_{j=1}^N \beta_j X_j$$
(24)

 β_0 - intercept of the model, β_j - model coefficient for the j_{th} neuron in the current bin, X_j - spiking activity of the j_{th} neuron of the current bin. The following equation is used to produce the outputs of the system: if p(Left|X) < 0.5 then -1 and if p(Left|X) > 0.5 then 1.

We used the implementation provided in MATLAB via the fitclinear function and the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm to find the optimal fit for the parameters (Shanno, 1970). We typically attempted

to predict choice or previous outcome using tens of units. To simplify the model, decrease collinearity of the coefficients and to avoid overfitting, we used L2 regularization (ridge regression):

$$J = \frac{\lambda}{2} \Sigma \beta^2 \tag{25}$$

Where J - cost associated with coefficients, λ - penalty term (1/number of in-fold observations), and β are the coefficients of the model. We used 5-fold cross validation and calculated loss for each model. Accuracy is reported as accuracy = 1 - mean(loss).

⁸³⁰ 4.17. Subspace overlap analysis

To determine how much of firing rate covariance with RTs could be explained by the outcome subspace (PCA organized by choice and outcome, Fig. 7A, B) we performed an analysis where firing data from all 996 units organized by RT and choice was projected into the first six dimensions from the PCA organized by outcome and choice . For this purpose we used a modified version of the alignment index developed by Elsayed et al. (2016):

$$A = \frac{tr(D_{outcome}^T C_{RT} D_{outcome})}{\sum_{i=1}^{996} \sigma_{RT}(i)}$$
(26)

The alignment index, A, provides an estimate of the fraction of variance that is explained by projecting one 835 subspace into another. tr() is the trace of a matrix, which can be proved to be the sum of its eigenvalues. 836 $D_{outcome}$ is the first six eigenvectors of all 996 units from the PCA organized by outcome and choice. C_{RT} is 837 the covariance matrix of the firing rates of all 996 units organized by RT and choice. $\sigma_{RT}(i)$ are the eigenvalues 838 (i) of the covariance matrix organized by RT and choice. For our purposes, we used the total variance in the 839 denominator instead of the same number of dimensions as the numerator. Thus, the alignment index calculates 840 the ratio of how much of the total variance from firing data organized by RT and choice is explained by the 841 outcome subspace. 842

⁸⁴³ 4.18. Demixed principal component analysis (dPCA)

We used dPCA, a semi-supervised dimensionality reduction technique to further understand if prestimulus activity 844 which covaried with RTs shared variance with firing rate activity that covaried with the previous trial's outcome. 845 We performed two dPCAs. The first identified axes that maximally accounted for firing rate variability from trial 846 outcome and the second identified axes that maximally accounted for firing rate variability that covaried with 847 RTs. We then calculated the dot product between these axes and estimated the angle using the inverse cosine 848 of the dot product. An angle of zero would indicate that these axes completely overlap and that their sources of 849 variance are the same, whereas orthogonal angles would mean that the axes do not overlap and therefore share 850 no variance. 851

References

- Afshar, A., Santhanam, G., Yu, B. M., Ryu, S. I., Sahani, M., and Shenoy, K. V. (2011). Single-trial neural correlates of arm movement preparation. *Neuron*, 71:555–564.
- Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., and Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. *Trends in Neurosciences*, 33:10–16.
- Briggman, K. L., Abarbanel, H. D. I., and Kristan, W. B. (2005). Optical imaging of neuronal populations during decision-making. *Science*, 307:896–901.
- Brody, C. D. and Hanks, T. D. (2016). Neural underpinnings of the evidence accumulator. *Current Opinion in Neurobiology*, 37:149–157.
- Brunton, B. W., Botvinick, M. M., and Brody, C. D. (2013). Rats and humans can optimally accumulate evidence for decision-making. *Science*, 340:95–98.
- Chaisangmongkon, W., Swaminathan, S. K., Freedman, D. J., and Wang, X. J. (2017). Computing by robust transience: How the fronto-parietal network performs sequential, category-based decisions. *Neuron*, 93:1504–1517.e4.
- Chandrasekaran, C., Bray, X. E., and Shenoy, K. V. (2019). Frequency shifts and depth dependence of premotor beta band activity during perceptual decision-making. *Journal of Neuroscience*, 39:1420–1435.
- Chandrasekaran, C., Peixoto, D., Newsome, W. T., and Shenoy, K. V. (2017). Laminar differences in decision-related neural activity in dorsal premotor cortex. *Nature Communications*, 8:614.
- Chandrasekaran, C., Soldado-Magraner, J., Peixoto, D., Newsome, W. T., Shenoy, K. V., and Sahani, M. (2018). Brittleness in model selection analysis of single neuron firing rates. *bioRxiv*.
- Churchland, A. K., Kiani, R., and Shadlen, M. N. (2008). Decision-making with multiple alternatives. *Nature Neuroscience*, 11:693–702.
- Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., and Shenoy, K. V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. *Journal of Neuroscience*, 26:3697–3712.
- Cisek, P. (2012). Making decisions through a distributed consensus. *Current Opinion in Neurobiology*, 22:927–936.
- Cisek, P., Puskas, G. A., and El-Murr, S. (2009). Decisions in changing conditions: The urgency-gating model. *Journal of Neuroscience*, 29:11560–11571.
- Coallier, E., Michelet, T., and Kalaska, J. F. (2015). Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence. *Journal of Neurophysiology*, 113:3543–3573.
- Cowley, B. R., Snyder, A. C., Acar, K., Williamson, R. C., Yu, B. M., and Smith, M. A. (2020). Slow drift of neural activity as a signature of impulsivity in macaque visual and prefrontal cortex. *Neuron*, 108:551–567.e8.
- Danielmeier, C. and Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2.
- Derosiere, G., Thura, D., Cisek, P., and Duque, J. (2022). Hasty sensorimotor decisions rely on an overlap of broad and selective changes in motor activity. *PLOS Biology*, 20:e3001598.
- Dutilh, G., Ravenzwaaij, D. V., Nieuwenhuis, S., der Maas, H. L. V., Forstmann, B. U., and Wagenmakers, E. J. (2012). How to measure post-error slowing: A confound and a simple solution. *Journal of Mathematical Psychology*, 56:208–216.
- Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M., and Cunningham, J. P. (2016). Reorganization between preparatory and movement population responses in motor cortex. *Nature Communications*, 7.
- Even-Chen, N., Stavisky, S. D., Kao, J. C., Ryu, S. I., and Shenoy, K. V. (2017). Augmenting intracortical brain-machine interface with neurally driven error detectors. *Journal of Neural Engineering*, 14.

- Ferguson, K. A. and Cardin, J. A. (2020). Mechanisms underlying gain modulation in the cortex. Nature Reviews Neuroscience, 21:80–92.
- Ghazanfar, A. A. and Santos, L. R. (2004). Primate brains in the wild: the sensory bases for social interactions. *Nature Reviews Neuroscience*, 5:603–616.
- Gold, J. I. and Shadlen, M. N. (2007). The neural basis of decision making. *Annual Review of Neuro-science*, 30:535–574.
- Guo, Z. V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J. T., Feng, G., and Svoboda, K. (2014). Flow of cortical activity underlying a tactile decision in mice. *Neuron*, 81:179–194.
- Hanks, T., Kiani, R., and Shadlen, M. N. (2014). A neural mechanism of speed-accuracy tradeoff in macaque area LIP. *eLife*, 3.
- Hanks, T. D., Kopec, C. D., Brunton, B. W., Duan, C. A., Erlich, J. C., and Brody, C. D. (2015). Distinct relationships of parietal and prefrontal cortices to evidence accumulation. *Nature*, 520:220–223.
- Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R., and Brown, S. D. (2015). Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. *Journal of Neuroscience*, 35:2476–2484.
- He, B. J. (2013). Spontaneous and task-evoked brain activity negatively interact. *Journal of Neuroscience*, 33:4672–4682.
- Heitz, R. P. and Schall, J. D. (2012). Neural mechanisms of speed-accuracy tradeoff. *Neuron*, 76:616–628.
- Hyman, J. M., Whitman, J., Emberly, E., Woodward, T. S., and Seamans, J. K. (2013). Action and outcome activity state patterns in the anterior cingulate cortex. *Cerebral Cortex*, 23:1257–1268.
- Jun, J. K., Miller, P., Hernández, A., Zainos, A., Lemus, L., Brody, C. D., and Romo, R. (2010). Heterogenous population coding of a short-term memory and decision task. *Journal of Neuroscience*, 30:916–929.
- Kato, S., Kaplan, H. S., Schrödel, T., Skora, S., Lindsay, T. H., Yemini, E., Lockery, S., and Zimmer, M. (2015). Global brain dynamics embed the motor command sequence of caenorhabditis elegans. *Cell*, 163:656–669.
- Kaufman, M. T., Churchland, M. M., Ryu, S. I., and Shenoy, K. V. (2014). Cortical activity in the null space: Permitting preparation without movement. *Nature Neuroscience*, 17:440–448.
- Kelly, S. P. and O'Connell, R. G. (2013). Internal and external influences on the rate of sensory evidence accumulation in the human brain. *Journal of Neuroscience*, 33:19434–19441.
- Kiani, R., Churchland, A. K., and Shadlen, M. N. (2013). Integration of direction cues is invariant to the temporal gap between them. *Journal of Neuroscience*, 33:16483–16489.
- Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C. E., Kepecs, A., Mainen, Z. F., Qi, X.-L., Romo, R., Uchida, N., and Machens, C. K. (2016). Demixed principal component analysis of neural population data. *eLife*, 5.
- Kurata, K. and Hoffman, D. S. (1994). Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. *Journal of Neurophysiology*, 71:1151–1164.
- Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., and Pillow, J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. *Science*, 349:184–187.
- Machens, C. K., Romo, R., and Brody, C. D. (2010). Functional, but not anatomical, separation of "what" and "when" in prefrontal cortex. *Journal of Neuroscience*, 30:350–360.
- Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. *Nature*, 503:78–84.
- Mazor, O. and Laurent, G. (2005). Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. *Neuron*, 48:661–673.

- Meister, M. L., Hennig, J. A., and Huk, A. C. (2013). Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. *Journal of Neuroscience*, 33:2254–2267.
- Murphy, P. R., Boonstra, E., and Nieuwenhuis, S. (2016). Global gain modulation generates timedependent urgency during perceptual choice in humans. *Nature Communications*, 7:13526.
- Okazawa, G., Hatch, C. E., Mancoo, A., Machens, C. K., and Kiani, R. (2021). Representational geometry of perceptual decisions in the monkey parietal cortex. *Cell*, 184:3748–3761.e18.
- Pandarinath, C., O'Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., Henderson, J. M., Shenoy, K. V., Abbott, L. F., and Sussillo, D. (2018). Inferring single-trial neural population dynamics using sequential auto-encoders. *Nature Methods*, 15:805–815.
- Peixoto, D., Kiani, R., Chandrasekaran, C., Ryu, S. I., Shenoy, K. V., and Newsome, W. T. (2018). Population dynamics of choice representation in dorsal premotor and primary motor cortex. *bioRxiv*.
- Peixoto, D., Verhein, J. R., Kiani, R., Kao, J. C., Nuyujukian, P., Chandrasekaran, C., Brown, J., Fong, S., Ryu, S. I., Shenoy, K. V., and Newsome, W. T. (2021). Decoding and perturbing decision states in real time. *Nature*, 591:604–609.
- Pereira, M., Megevand, P., Tan, M. X., Chang, W., Wang, S., Rezai, A., Seeck, M., Corniola, M., Momjian, S., Bernasconi, F., Blanke, O., and Faivre, N. (2021). Evidence accumulation relates to perceptual consciousness and monitoring. *Nature Communications*, 12:3261.
- Purcell, B. A. and Kiani, R. (2016). Neural mechanisms of post-error adjustments of decision policy in parietal cortex. *Neuron*, 89:658–671.
- Ratcliff, R. (1978). A theory of memory retrieval. *Psychological Review*, 85:59–108.
- Ratcliff, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Diffusion decision model: Current issues and history. *Trends in Cognitive Sciences*, 20:260–281.
- Remington, E. D., Egger, S. W., Narain, D., Wang, J., and Jazayeri, M. (2018a). A dynamical systems perspective on flexible motor timing. *Trends in Cognitive Sciences*, 22:938–952.
- Remington, E. D., Narain, D., Hosseini, E. A., and Jazayeri, M. (2018b). Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics. *Neuron*, 98:1005–1019.e5.
- Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D., Miller, E. K., and Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks. *Nature*, 497:585–590.
- Roitman, J. D. and Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. *The Journal of Neuroscience*, 22:9475–9489.
- Shadlen, M. N. and Newsome, W. T. (1996). Motion perception: seeing and deciding. Proceedings of the National Academy of Sciences, 93:628–633.
- Shadlen, M. N. and Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. *Journal of Neurophysiology*, 86:1916–1936.
- Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimization. *Mathematics* of *Computation*, 24:647.
- Shenoy, K. V., Sahani, M., and Churchland, M. M. (2013). Cortical control of arm movements: A dynamical systems perspective. *Annual Review of Neuroscience*, 36:337–359.
- Stroud, J. P., Porter, M. A., Hennequin, G., and Vogels, T. P. (2018). Motor primitives in space and time via targeted gain modulation in cortical networks. *Nature Neuroscience*, 21:1774–1783.
- Thura, D., Cabana, J.-F., Feghaly, A., and Cisek, P. (2020). Unified neural dynamics of decisions and actions in the cerebral cortex and basal ganglia. *bioRxiv*, page 2020.10.22.350280.
- Thura, D. and Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. *Neuron*, 81:1401–1416.
- Thura, D., Cos, I., Trung, J., and Cisek, P. (2014). Context-dependent urgency influences speed-accuracy trade-offs in decision-making and movement execution. *Journal of Neuroscience*, 34:16442–16454.

- Thura, D., Guberman, G., and Cisek, P. (2017). Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex. *Journal of Neurophysiology*, 117:665–683.
- Ullsperger, M., Danielmeier, C., and Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. *Physiol Rev*, 94:35–79.
- van den Brink, R. L., Wynn, S. C., and Nieuwenhuis, S. (2014). Post-error slowing as a consequence of disturbed low-frequency oscillatory phase entrainment. *Journal of Neuroscience*, 34:11096–11105.
- Vyas, S., Golub, M. D., Sussillo, D., and Shenoy, K. V. (2020a). Computation through neural population dynamics. *Annual Review of Neuroscience*, 43:249–275.
- Vyas, S., O'Shea, D. J., Ryu, S. I., and Shenoy, K. V. (2020b). Causal role of motor preparation during error-driven learning. *Neuron*, 106:329–339.e4.

5. Author Contributions

CC trained both monkeys and recorded in PMd using multi-contact electrodes under the mentorship of KVS. PB, TW, and CC jointly collaborated on the various analyses. GK and LC provided helpful insights for analysis and relevant literature for the manuscript. PB and CC wrote initial drafts of the paper. All authors refined further drafts contributing analyses, insights, and writing.

6. Acknowledgments

We thank Dr. Michael Economo, Dr. Kamal Sen, and Dr. Matt Golub for comments on the previous versions of the manuscript.

CC was supported by a NIH/NINDS R00 award R00NS092972, the Moorman-Simon Interdisciplinary Career Development Professorship from Boston University, the Whitehall foundation, the Young Investigator Award from the Brain and Behavior Research Foundation, and an NIH/NINDS R01 award NS122969. KVS was supported by the following awards: NIH Director's Pioneer Award 8DP1HD075623, NIDCD R01-DC014034, NIDCD U01-DC017844, NINDS UH2-NS095548, NINDS UO1-NS098968, DARPA-BTO 'REPAIR' Award N66001-10-C-2010, DARPA-BTO 'NeuroFAST' award W911NF-14-2-0013, Simons Foundation Collaboration on the Global Brain awards 325380 and 543045, Office of Naval Research award N000141812158, Larry and Pamela Garlick, Wu Tsai Neurosciences Institute at Stanford, the Hong Seh and Vivian W. M. Lim endowed professorship and the Howard Hughes Medical Institute. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

7. Declaration of interests

K.V.S. consults for Neuralink Corp. and CTRL-Labs Inc. (part of Facebook Reality Labs) and is on the scientific advisory boards of MIND-X Inc., Inscopix Inc., and Heal Inc. All other authors have no competing interests. These companies provided no funding and had no role in study design, data collection, and interpretation or the decision to submit the work for publication.

Supplemental materials

Figure S1: **Percent variance explained by each component from the PCA organized by RT and choice:** "signal+noise" and "noise" variance explained by the first 10 components. The first six components capture over 90% of the variance. To derive the error bars for the signal+noise PCA, we used bootstrapping (50 repeats) over trials to estimate standard errors.

Figure S2: Prestimulus spiking activity is predictive of RT but not choice, even when decoding is performed within RT bins (A/B) Scatterplot of true mean prestimulus R^2 /accuracy values compared to the R^2 /accuracy values for the 99th percentile of the shuffled data. Each dot represents the bin- and trial-averaged prestimulus mean R^2 /accuracy value within each of the 51 sessions. The dotted line is where scatter points would fall if shuffled R^2 and real R^2 values were equivalent. (A) Many of the points lie above this line suggesting that real prestimulus neural activity explains more of the RT variance than shuffled neural data. (B) In contrast, many of the points lie on or below this line suggesting that real prestimulus neural activity is not predictive of choice. (C) Plot of mean accuracy from logistic regressions of binned spiking activity (20 ms) used to predict trial-matched eventual choice within RT bins. Accuracy is averaged across 51 sessions. Gray shaded area is *SEM*. The gray dotted line is 50% accuracy.

Figure S3: Neural dynamics associated with post-error slowing may demonstrate larger choice selectivity (A) Average RTs from all error \rightarrow correct and trial-matched correct \rightarrow correct sequences found across both monkeys and all sessions (error bars are 2 × SEM). On average both monkeys demonstrate classical post-error slowing. (B) LFADS trajectories in the space of the first three orthogonalized factors ($X_{1,2,3}$), obtained via PCA on LFADS latents, for 30% of post-correct and all post-error trials, for all coherences and left reaches from a single session (23 units). Each trajectory is plotted from 200 ms before checkerboard onset (dots) to movement onset (diamonds). (C) Scree plot of the percentage of variance explained by the first ten components. The first six PCs capture $\sim 90\%$ of the variance in firing rate activity. (D) Euclidean distance in the first six dimensions between the two reach directions aligned to checkerboard onset ('Cue' & black dashed line). We observed no prestimulus separation between reach directions. Choice selectivity is lower and slower for error trials compared to all other outcomes. Post-error choice selectivity may be larger than other trial outcomes.

Figure S4: Diagram of kinematic analysis of neural trajectories (KiNeT) The middle trajectory in cyan denotes the reference trajectory Ω_{ref} . Two non-reference Ω_1 (violet) and Ω_2 (orange) denote trajectories that evolve faster and slower than Ω_{ref} , respectively. For each timepoint j, the corresponding neural state on the reference trajectory is denoted as $s_{ref}[j]$ and $t_{ref}[j]$ is the corresponding time for the reference trajectory to evolve from the initial point to $s_{ref}[j]$. The closest points to $s_{ref}[j]$ on the fast and slow trajectories as measured by Euclidean distance are denoted by $s_1[j]$ and $s_2[j]$. $t_1[j]$ and $t_2[j]$ are the corresponding times to reach $s_1[j]$ and $s_2[j]$. The vector connecting the two closest points on adjacent trajectories at timepoint j is denoted as $\Delta i^{\Omega}[j]$. The angle between two adjacent vectors is calculated as $\theta_i[j]$

- *i* index of non-reference trajectories
- *j* index of timepoints associated with the reference trajectory
- Ω_i the i^{th} non-reference trajectory
- τ timepoints associated with the non-reference trajectories
- $\Omega_i(\tau)$ position of non-reference trajectory at timepoint τ
- s_{ref}[j]- position of reference trajectory at the jth timepoint
- $s_i[j]$ closest position of Ω_i to $s_{ref}[j]$ at timepoint j
- t_i[j]- the non-reference timepoint for when it's closest to the reference trajectory at timepoint j (corresponding time of s_i[j])
- D_i[j]- distance between nearest point on non-reference trajectory Ω_i and reference trajecory at index j
- Δi^Ω[j]- vector connecting two nearest points on two adjacent trajectories.
- $\theta_i[j]$ angle between two adjacent vectors Δ_i^{Ω} and Δ_{i+1}^{Ω}
- *argmin* where function achieves its minimum at point *j*